XRoar 1.0.8

Dragon and Tandy Colour Computer emulator

This manual is for XRoar (version 1.0.8), a Dragon and Tandy 8-bit computer emulator.
Copyright (©) 2022 Ciaran Anscomb.

Table of Contents

1 Getting started......... 1
1.1 Introductiono 1
1.2 Notes for Version 1.Xt e e e e 1
1.3 PrerequiSites. . .. 2
1.4 User-interface introduction.............. i e 2
1.5 RUNNING PrOGLaIIS . .« oottt ettt et e et e et e 3
1.6 Troubleshooting 3

1.6.1 No BASIC ROM ... e e e e 3
1.6.2 Program lacks colour. 4
1.6.3 Can’t access HD/SD image...... ..ot 4
1.6.4 DebUg MESSAZES . « ..t v vttt et e 4

2 Configuration.............. 5
2.1 The configuration file e 5
2.2 Command [ine OPLIONSottt et e e e 6

3 Machines. 7
3.1 Machine profiles 7
3.2 Machine architectures. e 8

3.2. 1 Dragom 32 ... 8
3.2.2 Dragomn 64 e 8
3.2.3 Tandy Colour Computer 1/2t 8
3.2.4 Tandy MOC-10. . ..o 8
3.2.5 Tandy Colour Computer 3ttt 8

4 Cartrid@es 10
4.1 Cartridge profiles 10
4.2 Cartridge TyPeS . ..ottt 10

4.2.1 DragonDOS .. o 10
4.2.2 Delba .. 11
4.2.3 RS-DOS . 11
4.2.4 Glenside IDE controller 11
4.2.5 NX32 and MOOH cartridgesvotii e 11
4.2.6 Games Master Cartridge 11
4.2.7 Orchestra 90-CC sound cartridgeo 11
4.2.8 Multi-Pak Interface i 12
4.2.9 BeCKer pPort ... o 12

5 Storage media......... 13
Dl aSSEE S - o v et 13
5.2 Floppy disks . ..ot 14
5.3 Hard disKs. 15

6 Peripherals 16
6.1 Keyboard. 16
6.2 JOoystickst 16

0.3 Printers ... 18

T Files. ... 19
7.1 ROM cartrid@es . ..ottt et e e e 19
7.2 ONaPShOtS . .o 19
7.3 Binary flles e 19
7.4 Firmware ROM ImMAagesottt et e ettt e e 20

8 Userinterface................ 21
8.1 User interface Selection.c.oiiiiiiiiiiii e 21

8.1.1 GTEKH user Interface.o e 21
8.1.2 SDL user interface 21
8.1.3 NULL user interfaceo e 21
8.2 Video OUtPUL - ... 21
8.3 AUdio OUtPUL . .« oo 22

9 Debugging............ 23

10 Acknowledgements 25

Appendix A Installation..................... 26
A1 Binary packages. 26

A.1.1 Mac OS X binary packageuiini o 26

A.1.2 Windows binary packageo.eoniii i 26

A2 Building from SOUTCEttt e 26
A2 1 Dependencies.ttt 26
A2.2 Compilation. e 27
Appendix B Keyboard shortcuts............................... 28
Appendix C Fileformats.................................... ... 29

Appendix D Option list............ 30

1 Getting started

1.1 Introduction

XRoar emulates the Dragon 32/64; Tandy Colour Computers 1, 2 and 3; the Tandy MC-10;
and some other similar machines or clones. It runs on a wide variety of platforms. Emulated
hardware includes:

e Dragon 32, 64, and 200-E; Tandy CoCo 1, 2, & 3; Tandy MC-10.

e DragonDOS, Delta and RS-DOS disk controller cartridges.

e Orchestra 90-CC stereo sound cartridge.

e Games Master Cartridge, including the SN76489 sound chip.

e Glenside IDE cartridge, with IDE hard disk image support.

e NX32 and MOOH RAM expansions, with SPI and SD card image support.

Other features include:
e Raw and translated keyboard modes.
e Read and write tape images (compact .cas files or audio, e.g. .wav).
e Read and write VDK, JVC and DMK format floppy disk images.
e Becker port for communication with remote servers.
e Save and load machine snapshots.

e GDB target for remote debugging.

XRoar is easily built from source under Linux, and binary packages are provided for Mac OS
X and Windows.

XRoar can also be compiled to WebAssembly, and redistributing it in this form may provide
a convenient way for users to run your Dragon software. See XRoar Online (https://www.
6809.org.uk/xroar/online/) for an example.

1.2 Notes for version 1.x

Version 1.x comes with support for two new emulated machines: the Tandy Colour Computer
3 and the Tandy MC-10. Some major changes have taken place under the hood, and although
most things should remain familiar, for some special uses, here are the things you need to know.

Snapshots now store much more state, and of course support the new emulated machines, but
this means the format had to change. Snapshots from the last 0.x release are still recognised,
and can be loaded, but this support is likely to be removed in time.

The tape emulation now supports manual pause control. On the MC-10, this defaults to
paused, as it has no ability to remotely control the tape motor. You will need to un-pause after
typing CLOAD or CLOADM on the MC-10 (File — Cassette — Play, or from the tape control tool;
autorunning will do this automatically).

Previously, the Glenside IDE controller would use a fixed HD image file in the current working
directory called hd0.img. You must now specify an image with the ~load-hd0 option. There is
also the new ability to attach a second hard disk image with -load-hd1, if you have software
that can access it.

Similarly, the NX32 and MOOH cartridges would use a fixed SD image file, and you must
now specify it with the ~1load-sd option.

https://www.6809.org.uk/xroar/online/
https://www.6809.org.uk/xroar/online/

Chapter 1: Getting started 2

1.3 Prerequisites

After installing XRoar (see Appendix A [Installation], page 26), the first thing to do is make
sure you have the firmware ROM images available for the system you wish to emulate. Without
these, you will see rubbish on the screen (probably a checkerboard pattern, reflecting the initial
state of RAM, see Section 1.6 [Troubleshooting], page 3).

These firmware images can be transferred from your original machine (with some effort,
outside the scope of this document) or more likely found online on one of the archive websites.
XRoar searches certain directories for these images, depending on platform, including (where
= indicates your "home directory"):

Platform ROM path

Unix/Linux ~/.xroar/roms:prefix/share/xroar/roms

Windows :”/Documents/XRoar/roms: ~/AppData/Local/XRoar/roms:
~/AppData/Roaming/XRoar/roms

Mac OS X ~/Library/XRoar/roms:prefix/share/xroar/roms

Firmware ROM image files should have a .rom extension, and be headerless (so their file size
will be an exact power of two bytes). For most use cases, you’ll need the BASIC ROM image(s)
and a disk controller ROM image. Here are the expected filenames for the most common images:

Firmware ROM Filename File size

Dragon 32 BASIC d32.rom 16K (16384 bytes)
Dragon 64 32K BASIC d64_1.rom 16K

Dragon 64 64K BASIC d64_2.rom 16K

DragonDOS ddos10.rom 8K (8192 bytes)
Tandy Colour BASIC bas13.rom 8K

Tandy Extended BASIC extbasll.rom 8K

Tandy Super ECB (CoCo 3) coco3.rom 32K (32768 bytes)
Tandy Super ECB (PAL CoCo 3) coco3p.rom 32K

Tandy RS-DOS diskll.rom 8K

Tandy Microcolour BASIC (MC-10) mc10.rom 8K

Other machines (in particular the less common Dragon 200-E) will need a different set of
ROM images, and other supported peripherals may also need their own firmware.

1.4 User-interface introduction

With the prerequisites satisfied, on running XRoar you should now be presented with a window
showing an emulated machine with a menu bar at the top showing (at least) File, View, Hardware
and Tool menus. Mac OS users will see the menu bar at the top of the whole screen instead.
There are often keyboard shortcuts for these, detailed throughout this manual and listed in
Appendix B [Keyboard shortcuts], page 28.

You can put XRoar into fullscreen mode by selecting View — Full Screen, but you will notice
that the menu bar disappears. To return to windowed mode, use the keyboard shortcut CTRL+F,
or just F11. You can also toggle the menubar manually by pressing CTRL+M.

As you type, you may notice that certain keys don’t produce the character you pressed.
This is because by default, XRoar tries to map keys such that they closely approximate their
locations on the machine being emulated, so minus on a modern PC keyboard types colon in
the emulated machine. This is good for playing games, where key placement is often important.
Be aware that some keys don’t have useful equivalents on modern keyboards: for CLEAR, press
HOME, or the backtick key; for BREAK, press ESCAPE.

Chapter 1: Getting started 3

You can tell XRoar to translate PC keys to emulated keypresses by selecting Tool — Keyboard
Translation. For more about the keyboard, including mapping keys, see Section 6.1 [Keyboard],
page 16.

XRoar supports real joysticks, and simulating joysticks with the keyboard or mouse. You can
select which method is used for each of the emulated joysticks in the Hardware — Right Joystick
and Hardware — Left Joystick menus. The Keyboard option maps the cursor keys to joystick
directions!, with ALT and SUPER mapped to the first and second firebuttons respectively?. The
Mouse option relates the pointer position within the window to a joystick’s floating position,
with the left mouse button bound being the firebutton. Much of this can be configured, see
Section 6.2 [Joysticks], page 16.

The Hardware menu also allows you to select which machine to emulate, and attach a car-
tridge to the running machine. If ROM images were found for it, you’ll probably see that a disk
cartridge is already attached. Swapping cartridges ’live’ is not something you’d generally do on
a real machine, and if you change the selection, you may need to select Hardware — Hard Reset
to see the effect.

1.5 Running programs

XRoar tries to make running programs easy; after all, it’s probably why you installed an emulator
in the first place. Select File — Run to open a file requester, and select the program media
image; in the majority of cases, and so long as the program was intended for the machine you
have selected, XRoar will "do the right thing" to try and start it.

As with much automation, we can’t foresee every eventuality, and sometimes you’ll have
to launch the program manually. In this case, you can still simply attach the image (without
autorunning it) by selecting File — Load, then follow the programs own instructions.

Here’s what XRoar tries to do with various types of media image. XRoar uses filename
extensions to decide how to handle an image, so be sure to check that this is correct.

ROM cartridge images typically have a .rom extension (just like the firmware ROM images).
XRoar will create and insert a ROM cartridge (it will appear in the list under Hardware —
Cartridge) and, if autorunning, set it up to generate the autostart signalling and hard reset the
emulated machine.

For cassette images (usually a . cas or .wav), XRoar will try to determine the type of the first
program in the image, and autorunning will issue the ‘CLOAD’ or ‘CLOADM’ command accordingly,
followed by ‘EXEC’ or ‘RUN’ as appropriate. See Section 5.1 [Cassettes], page 13.

The only standard way of autostarting the program on a disk image is through its boot sectors,
so in this case XRoar will issue the ‘BO0T’ (Dragon) or ‘DOS’ (Tandy CoCo) command. These
are the most likely to fail as many disk images do not have boot sectors: read the instructions
for yours! Disk images can come in many formats, and the file extension is used to discriminate;
the most common are VDK (.vdk extension) or JVC (.dsk extension). See Section 5.2 [Floppy
disks], page 14.

1.6 Troubleshooting
1.6.1 No BASIC ROM

The most common issue when first using XRoar. You start the emulator and only see a checker-
board pattern of orange and inverse ‘@’ signs (or on the CoCo 3, some other pattern that’s not
the usual copyright messages). This probably indicates that XRoar could not locate any BASIC
ROM images. Acquire some and put them in the directory appropriate to your platform.

1 While mapped as a joystick, the cursor keys won’t work as actual emulated keys.
2 The second firebutton is only useful on the CoCo 3.

Chapter 1: Getting started 4

cC» 192 DRAGOH DATA LTI
16K EBAZIC INTERFRETER 1.0
tC2» 1982 BY MICROSOFT

Ok

Figure 1.1: Emulator with and without BASIC ROM

1.6.2 Program lacks colour

You remember a program being in colour, but all you see is black and white.

American software was often written to exploit cross-colour artefacts, where alternating pat-
terns of black and white would "trick" the TV into displaying colour. XRoar supports this, and
should enable it by default when you choose an NTSC machine. If you’re running an NTSC
game on a PAL machine, you can still force XRoar to render the colours by selecting a cross-
colour option from View — TV Input. There are also options that affect the fidelity of this
rendering. See Section 8.2 [Video output], page 21, for more details.

TIME
BARDIT

HEITTEN EWY

EILL DUMNLEUY -l'll'll:l
HAEEREY LAaFNEnAaFR

Figure 1.2: Time Bandit, Dunlevy & Lafnear, 1983 in different cross-colour modes

1.6.3 Can’t access HD/SD image
If you’ve been using previous versions of XRoar with the IDE, MOOH, or NX32 cartridges, you

now need to specify the image filename with -1load-hd0 (HD image for IDE) or -load-sd (SD
image for NX32, MOOH).

1.6.4 Debug messages
XRoar prints diagnostic messages to standard output and standard error, and these may help
narrow down a problem. You can increase their verbosity with various command-line options.
See Chapter 9 [Debugging], page 23, for more information.

Windows generally does not show these messages by default. but you can allocate a console
by running XRoar from the command line and including -C as the very first option.

2 Configuration

XRoar can be configured by placing options into a configuration file, or by specifying options
on the command line. The file is read first, then any command line options take precedence.

Many options may be preceded by ‘no-’ to invert their meaning or reset their value.

To print the current configuration to standard output (suitable for redirection to a config file),
run with -config-print. This will include all the built-in machine and cartridge definitions.
For a complete version including default values, use ~config-print-all.

2.1 The configuration file

The configuration file is called xroar.conf. Good default locations for xroar.conf are listed
in Appendix A [Installation], page 26, but it is actually searched for in a list of directories. You
can override this search path with the XROAR_CONF_PATH environment variable, which contains
a colon-separated (‘:’) list of directories. Here are the defaults:

Platform Default XROAR_CONF_PATH

Unix/Linux ~/.xroar:prefix/etc:prefix/share/xroar

Mac OS X “/Library/XRoar:~/.xroar:prefix/etc:prefix/share/xroar

Windows :"\Documents\XRoar: “\AppData\Local\XRoar: ~\AppData\Roaming\XRoar

Note the leading ‘:’ in the Windows default indicates an empty entry, meaning it will look in
the current working directory first (i.e. you can put xroar.conf into the directory from which
you run XRoar).

A leading tilde character (‘~’) indicates the user’s home directory: the HOME environment
variable on Unix systems, or USERPROFILE on Windows. prefiz is the installation prefix, which
is usually /usr/local.

To bypass the search path and start XRoar using a specific configuration file, pass -c file
as the very first option to XRoar.

Directives are listed in xroar.conf one per line. They contain an option, possibly followed
by whitespace and a value. Trailing whitespace is ignored. Empty lines are skipped, and any
line where the first non-whitespace character is a hash (‘#’) is treated as a comment. Options
do not need their leading dash (‘=’) in the configuration file.

If a value contains special characters, or if you want trailing whitespace to be included in
the value, you must escape those characters. Sections contained within pairs of single or double
quotes are escaped, except the backslash (‘\”) which introduces an escape sequence:

Sequence Description

‘\O’ Null (NUL), ASCII 0. Note that this is only permitted when not followed by
another octal digit, as it may be confused with an octal byte, so it may be
preferable to use ‘\x00’ instead.

‘\a’ Bell (BEL), ASCII 7, no equivalent on the Dragon keyboard.

‘\b’ Backspace (BS), ASCII 8, LEFT.

‘\e’ Escape (ESC), ASCII 27, no equivalent on the Dragon keyboard, but mapped
to BREAK by the -type option.

£’ Form Feed (FF), ASCII 12, CLEAR.

‘\n’ Newline (NL), ASCII 10, DOWN. Not usually used by the Dragon as a line
ending, instead try ‘\r’.

A\r’ Carriage Return (CR), ASCII 13, ENTER.

At Horizontal Tab (HT), ASCII 9, RIGHT.

v’ Vertical Tab (VT), ASCII 11, no equivalent on the Dragon keyboard.

Chapter 2: Configuration 6

‘\nnn’ 8-bit byte with value specified as a three-digit octal number, nnn.
‘\xhh’ 8-bit byte with value specified as a two-digit hexadecimal number, hh.
‘\uhhhbh’ 16-bit Unicode codepoint specified as a four-digit hexadecimal number, hhhh.

Internally, this will be encoded as UTF-8.

Any other character following a backslash—including another backslash—is included verba-
tim. For example, this will be necessary in the configuration file under Windows when file paths
include the backslash as a directory separator.

2.2 Command line options

On the command line, it is assumed that your shell will handle argument quoting, so any quote
characters will be included verbatim. Escape sequences are still parsed, except when an option
expects a filename, as shells often use their own escaping mechanisms when autocompleting
filename arguments.

3 Machines

3.1 Machine profiles

XRoar creates a list of machine profiles from built-in and user-supplied configuration. One of
these profiles is selected at startup, using either the -m name option (short for -default-machine
name) on the command line, or by XRoar testing each profile in turn to see if its configured ROM
image files are available.

Each machine profile has a base architecture (specified with the -machine-arch option). See
Chapter 3 [Machines], page 7, for details of the supported architectures, and which machine
profiles are built-in.

-m name, Default machine profile to select on startup.
-default-machine name
-machine name Create or modify named machine profile. The remaining op-
tions configure the profile. -machine help lists currently de-
fined profiles.
-machine-desc text Description shown in -machine help and menu options.
-machine-arch arch Base machine architecture. See Chapter 3 [Machines], page 7,
for a list. ‘dragon32, dragon64, coco, coco3’ or ‘mci0’.
-machine-keyboard type Override the type of keyboard attached to machine. ‘dragon,
dragon200e, coco’ or ‘coco3d’.

-machine-cpu cpu Fitted CPU. One of ‘6809 or ‘6309’. Not applicable to the
MC-10.

-bas rom ROM image for Colour BASIC (CoCo) or Microcolour BA-
SIC (MC-10).

-extbas rom ROM image for Extended BASIC (Super Extended BASIC
on the CoCo 3).

-altbas rom ROM image for 64K-mode Extended BASIC (Dragon 64,
Dragon 200-E).

-no-bas, Indicate the corresponding ROM is not fitted in this machine.

-no-extbas,

-no-altbas

-ext-charset rom ROM image to use for external character generator.

-tv-type type One of ‘pal’, ‘ntsc’ or ‘pal-m’. PAL-M is treated the

same as NTSC, except with magenta-green cross-colour in-
stead of blue-red (simulated composite rendering only at the
moment).

-tv-input input One of ‘cmp’ (composite video, no cross-colour), ‘cmp-br’
(composite video, blue-red cross-colour), ‘cmp-rb’ (compos-
ite video, red-blue cross-colour) or ‘rgb’ (RGB video, CoCo

3 only).
-vdg-type type Indicate the VDG variant fitted. One of ‘6847 or ‘6847t1’.
-ram kbytes Amount of RAM fitted in kilobytes. Valid sizes are 4-64K for

Dragon and Tandy CoCo 1/2; 128K or 512K for the Tandy
CoCo 3; 2K, 4K or 20K for the Tandy MC-10.
-machine-cart name Default cartridge to attach.
-no-machine-cart Indicate that XRoar is not to automatically attempt to at-
tach a DOS cartridge to this machine (the default is to try).

For example, if the following lines were placed in your xroar.conf, a new machine could be
selected with -m pippin:

Chapter 3: Machines 8

machine pippin
machine-desc "Dragon Pippin (prototype)"
machine-arch dragon32
ram 16

3.2 Machine architectures

XRoar supports several underlying machine architectures, and has one or more built-in machine
profile configurations based on each one. See Section 3.1 [Machine profiles], page 7, for more
information on modifying or creating profiles. The rest of this section describes the available
architectures.

3.2.1 Dragon 32

Released in 1982, the Dragon 32 closely follows Motorola’s reference design for the MC6809
CPU, MC6883 Synchronous Address Multiplexer and the MC6847 Video Display Generator.
Dragon Data also chose to make it electrically compatible with some of Tandy’s peripherals for
their Colour Computer; notably the joystick and cartridge ports. In addition, it has a parallel
port, making it compatible with the majority of printers on the market at the time.

Architecture ‘dragon32’. Built-in machine profile ‘dragon32’.

3.2.2 Dragon 64

The Dragon 64 was released the next year, in 1983. In upped the on-board RAM to 64K and
provided a reassembled version of Microsoft BASIC to make use of it. It also added a serial
port, though that is not yet emulated by XRoar.

There are a few more changes to the motherboard than just extra RAM, so XRoar treats
this as a separate architecture.

Architecture ‘dragon64’. Built-in machine profiles: ‘dragon64’, ‘tano’ (American NTSC
version of Dragon 64 by Tano), ‘dragon200e’ (localised Spanish Dragon 64 from Eurohard).

3.2.3 Tandy Colour Computer 1/2

An earlier (1980) Tandy machine made using Motorola’s reference design, primarily marketed
in the USA. Sold at many price points, with 4K (originally), 16K, 32K or 64K of RAM and
either with or without Extended Colour BASIC. Later versions came with a new version of the
VDG, the MC6847T1, which included true lowercase characters.

Architecture ‘coco’. Built-in machine profiles: ‘coco’, ‘cocous’ (NTSC), ‘coco2b’ (T1),
‘coco2bus’ (NTSC, T1), ‘mx1600’ (Mexican clone by Dynacom).

3.2.4 Tandy MC-10

Released in 1983, a little too late to compete with the Sinclair ZX-81, it was discontinued a year
later. A cut-down machine based on the Motorola MC6803, but still using the MC6847 VDG
and containing a version of Microsoft BASIC. Comes with 4K of RAM, but much of the small
amount of software available for it assumes an additional 16K RAM pack.

Architecture ‘mc10’. Built-in machine profile ‘mc10’.

3.2.5 Tandy Colour Computer 3

In 1986, Tandy released the Colour Computer 3. They had developed a custom chip, the
TCC1014 (GIMFE), with VLSI to replace the SAM and VDG, and it supported extended graphics
modes, more memory (up to 512K directly) and a timer function, along with somewhat better
interrupt handling and the ability to run at twice the clock speed. A major development, it
maintained a high degree of compatibility with its predecessors, losing some lesser-used (in the
USA) graphics modes.

Chapter 3: Machines 9

The CoCo 3 generates different colours depending on whether you use the Composite Video
or RGB outputs. The NTSC version defaults to assuming Composite Video, while the PAL
version always used the RGB output from the GIME.

Architecture ‘coco3’. Built-in machine profiles: ‘coco3’ (NTSC), ‘coco3p’ (PAL).

10

4 Cartridges

4.1 Cartridge profiles

Similarly, XRoar contains a list of cartridge profiles, each with an underlying type.

-cart name Create or modify named cartridge profile. —cart help lists cur-
rently defined profiles. The remaining options configure the
profile.

-cart-desc text Cartridge description shown in —cart help and menu options.

-cart-arch arch Cartridge architecture. See Section 4.2 [Cartridge types],
page 10, for a list.

-cart-rom file The ROM image specified will be mapped from $C000.

-cart-rom2 file The ROM image specified will be mapped from $E000.

-cart-becker Enable Becker port where supported.

-cart-autorun Auto-start cartridge using FIRQ.

There are no cartridges usable with the MC-10 yet (the 16K expansion is technically a
cartridge, but XRoar currently emulates that as though it were on-board).

Built-in cartridge profiles exists with sensible defaults for each of the cartridge types except
‘rom’ (for which a profile is simply created when you try to autorun a ROM image), each with
the same name as the type.

Defining new cartridge profiles is most usefully done in the configuration file, for example:

cart mydos
cart-desc "SuperDOS E6"
cart-arch dragondos
cart-rom sdose6.rom
cart-rom2 dosdream.rom

This will define a cartridge called ‘mydos’ as a DragonDOS cartridge with its ROM replaced
with sdose6.rom, and an additional ROM called dosdream.rom (this was my setup in the
80s - DOS Dream is a very useful ROM-based editor/assembler/deugger that coexists with
DragonDOS - advert over).

XRoar will automatically attempt to find a disk interface relevant to the current machine
unless a specific default has been configured for the machine with -machine-cart, or automatic
selection is disabled with the -no-machine-cart option.

Selecting a ROM image file with the -1load or -run command line options, or with CTRL+L
or CTRL+SHIFT+L, will attach a ROM cartridge.

Within the emulator, cartridges can be enabled or disabled by pressing CTRL+E. You will
almost certainly want to follow this with a hard reset (CTRL+SHIFT+R).

4.2 Cartridge types

XRoar supports several types of cartridge, and has at least one built-in cartridge profile con-
figurations for each one. See Section 4.1 [Cartridge profiles|, page 10, for more information on
modifying or creating profiles. The rest of this section describes the available types.

4.2.1 DragonDOS

The official Dragon Data disk system for the Dragon. Supports 80 track, double sided, double-
density floppy disks.

Emulation supports the Becker port mapped to $FF49/$FF4A . if enabled.
Type ‘dragondos’. Built-in cartridge profile ‘dragondos’.

Chapter 4: Cartridges 11

4.2.2 Delta

Premier Microsystems’ alternative Dragon disk system. Apparently two versions of this may
have existed; XRoar emulates the double-density version.

Type ‘delta’. Built-in cartridge profile ‘delta’.

4.2.3 RS-DOS

Tandy’s disk interface for the CoCo. Typically supports only 35-track single-sided double-density
disks, though more is accessible using OS-9.

Emulation supports the Becker port.

Type ‘rsdos’. Built-in cartridge profile ‘rsdos’, ‘becker’ (with Becker port enabled, expect-
ing hdbdw3bck.rom).

4.2.4 Glenside IDE controller

Interfaces the Tandy CoCo to up to two IDE hard disks. Its IO is generally memory mapped to
addresses $FF50-$FF58. Also optionally supports the Becker port.

The controller supports up to two drives, and you can specify the image to use in each with
-load-hdO file or -load-hdl file. If file does not exist, a 256 MB empty image is created
when the controller first tries to access it.

Sectors are 512 bytes, and while some software may use all 512, others only access 256 bytes
per sector, padding the other 256 bytes (or simply doubling them up).

Type ‘ide’. Built-in cartridge profile ‘ide’.

4.2.5 NX32 and MOOH cartridges

Two memory expansion cartridges created by Tormod Volden for the Dragon. Both accept an
SD card image. These images have no header information and contain 256-byte sectors.

The earlier NX32 provides simple bank switching, while the MOOH provides extensive MM U
functionality very like that in the Tandy CoCo 3.

Types ‘nx32’, ‘mooh’. Built-in cartridge profiles: ‘nx32’, ‘mooh’. Both require fleshing out
with ROM information, and an SD card image specified, e.g.:

cart mooh
cart-rom sdbdos-eprom8-all-vl.rom

load-sd "~ /xroar/sdcard.img"

4.2.6 Games Master Cartridge

The Games Master Cartridge (‘gmc’), created by John Linville, provides the ability to bank
switch up to 64K of cartridge ROM, along with an on-board SN76489 sound chip.

This cartridge type is selected automatically (and configured to autostart) if you autorun a
ROM image larger than 16K.

Type ‘gmc’. Built-in cartridge profile ‘gmc’ is configured with no ROM installed, and to not
auto-start.

4.2.7 Orchestra 90-CC sound cartridge

A simple expansion that provides two 8-bit DACs for stereo sound (but still driven by the CPU).
An on-board ROM for the CoCo provides an interface to composition, but if autorun is disabled,
the hardware itself works fine on the Dragon.

Type ‘orch90’. Built-in cartridge profile ‘orch90’.

Chapter 4: Cartridges 12

4.2.8 Multi-Pak Interface

The Multi-Pak Interface (‘mpi’) is a CoCo add-on by Tandy that allows up to four cartridges to
be connected, selectable by software or hardware switch.

The RACE Computer Expansion Cage is a Dragon add-on by RACE similar to the MPI.
Addressing and behaviour differs.

If you attach either Multi-Pak Interface (MPI), you’ll want to populate one or more of its
slots (numbered 0-3). Use -mpi-load-cart [slot=]name to attach a named cartridge to the
specified (or next) slot. Configure the initially selected slot with -mpi-slot slot.

It’s not recommended to load more than one DOS cartridge into the MPI. As things stand,
only the last one (in slot order) will have the emulated drives properly connected.

Types ‘mpi’, ‘mpi-race’. Built-in cartridge profiles: ‘mpi’, ‘mpi-race’ (RACE variant).

machine coco
machine-cart mpi

mpi-load-cart O=orch90
mpi-load-cart 3=rsdos
mpi-slot 3

4.2.9 Becker port

Not a cartridge in and of itself, XRoar supports an emulator-only feature that enables it to
connect to a server using a TCP connection and access remote facilities such as disk images and
MIDI devices—the Becker port. This appears as a memory-mapped device, and XRoar supports
it as an optional feature of many cartridge types.

Enable this port when configuring a cartridge with —~cart-becker. The -becker option tells
XRoar to prefer a cartridge with it enabled when automatically selecting one.

The IP and port to connect to can be specified with the -becker-ip and -becker-port
options. These default to ‘127.0.0.1” and ‘65504’ respectively, matching the defaults for py-
DriveWire and DriveWire 4.

13

5 Storage media

5.1 Cassettes

Cassette tape was the primary method of loading software until floppy disk drives were available,
and remained popular for games distribution even then as it served the largest market. Data
is encoded onto cassette tape as audio, all currently-emulated machines using the same format,
where a single cycle represents one bit of data, and its wavelength determines the bit’s value.

The Dragon and Tandy Colour Computers have a built-in cassette relay that can control the
cassette motor remotely, but the MC-10 does not. After you type the appropriate load command
on an MC-10, you will have to manually start the player.

XRoar supports tapes as raw sampled audio in WAV format (.wav), or in the more compact
CAS format (.cas) which represents bits of data directly (files for the MC-10 are typically still
CAS format, but with a .c10 extension; these will also work).

An extension to the CAS format called CUE is also supported. This comprises extra data at
the end of the file that marks up the CAS file to indicate portions of silence, or the wavelength
used for each bit. This enables it to better represent the structure of the original tape, support
certain fast loaders, yet for data within the file to remain readable with a hex editor if it is
correctly aligned.

XRoar can also attach BASIC ASCII text files (with .bas or .asc file extensions) and
interpret them as cassettes, providing a useful way to edit these in your favourite text editor
before loading into the emulator. Note: this feature is not supported by the MC-10.

The tape used for writing is considered separate to the read tape (this is an emulator-friendly
approach to prevent overwriting your programs, though it would have been possible with two
cassette decks).

Under Windows and Mac OS, the File — Cassette menu contains controls to insert or rewind
the input and output tapes, play/pause and toggle options.

In the Unix/Linux GTK+ interface, these options are available from the tape control dialog,
which you can open with Tool — Tape control or by pressing CTRL+T. This dialog will also
show you the programs found on a cassette and allow you to double click them to seek to the
appropriate position.

-load-tape file Attach file as tape image for reading.
-tape-write file Open file for tape writing.
-tape-pan position Pan stereo input. Floating point number from ‘0.0’ (full

left) to ‘1.0’ (full right). The default of ‘0.5’ mixes the
two channels equally.

-tape-hysteresis pc Read hysteresis as percentage of full scale (default is 1%).

-no-tape-fast Disable fast tape loading. The default is enabled, which
uses ROM intercepts to speed up loading.

-no-tape-pad-auto Disable automatic padding of short leaders in CAS files (see
below).

-tape-ao-rate hz Set tape writing frame rate to hz (affects audio file output,
e.g. WAV). Default: ‘9600’Hz.

-tape-rewrite Enable tape rewriting (see below).
-tape-rewrite-gap-ms ms Gap length in milliseconds to write in rewrite mode (1-
5000ms, default 500ms).

-tape-rewrite-leader n Length of leaders in bytes to write in rewrite mode (1-2048

bytes, default 256).

Chapter 5: Storage media 14

-snap-motoroff file Write a snapshot to file each time the cassette motor is
switched off.

Tape padding defaults to on, may be useful to disable with -no-tape-pad-auto if you are
having trouble loading. A lot of old CAS tape images were created with their leaders truncated.
This worked fine in emulators that fully intercepted the ROM to load them, but causes issues
when converted to audio to play out to a real machine.

Tape rewriting, enabled with ~tape-rewrite is a special mode where the ROM is intercepted,
and anything read from the input tape is rewritten to the output tape. Custom loaders may
defeat it, but otherwise this is a good way of creating a well-formed CAS file, with bytes aligned
and consistent leader lengths.

The -snap-motoroff file option is useful for getting a dump of the machine state at the
moment a program has finished loading, but before it has started executing. If you specify file
with a .ram extension, you can get a simple RAM dump, viewable in a hex editor.

5.2 Floppy disks

Floppy disk drives provide much faster access to data than cassette tape. Initially costly, prices
did fall somewhat, so these became a fairly common expansion.

If a disk interface cartridge is selected, XRoar supports virtual disks. Three virtual disk
formats are supported:

-load-fdX file Load disk image file file into drive X (0-3).
-disk-write-back Default to enabling write-back for disk images.
-no-disk-auto-o0s9 Don’t try to detect headerless OS-9 JVC disk images.
-no-disk-auto-sd Don’t assume single density for 10 sector-per-track disks.

Under Windows and Mac OS, the File — Drive X menus allow you to insert or eject disks,
create new disks, or toggle the write-enable and write-back options.

In the Unix/Linux GTK+ interface, these options are available from the disk control dialog,
which you can open with Tool — Disk control or by pressing CTRL+D.

Note that RS-DOS for the Tandy Colour Computer numbers its drives from zero instead of
one, so when you perform operations on Drive 1, from the CoCo’s point of view, that will be
Drive 0.

-load-fdX file Load disk image file file into drive X (0-3).
-disk-write-back Default to enabling write-back for disk images.
-no-disk-auto- Don’t try to detect headerless OS-9 JVC disk images.
0s9

-no-disk-auto-sd Don’t assume single density for 10 sector-per-track disks.

When you attach a disk, it is read into memory, and subsequent disk operations are performed
on this in-memory copy. Write enable defaults to on (so write operations on the copy will work),
but write back defaults to off, so updates will not be written back to the disk image file. This
default protects your files from being corrupted, but you can change the default behaviour to
turn write back on with the -disk-write-back option.

Even with write-back enabled, disk images are not usually rewritten until they are ejected,
changed, or you quit the emulator. However, you can force rewriting the image files at any time
by pressing CTRL+SHIFT+D.

The JVC format specifies that the disk images without headers are single-sided, but some
double-sided disk images have been made available without headers. These cannot normally be
distinguished from a single-sided disk that happens to have twice the number of tracks. If an
0S-9 filesystem is present, the identification sector is inspected to determine the correct disk
structure. This step will always be performed for headerless images with the .os9 filename

Chapter 5: Storage media 15

extension, but may be disabled for the other valid JVC filename extensions with -no-disk-
auto-os9.

5.3 Hard disks

The Glenside IDE controller interfaces hard disks to the Tandy CoCo, and the MOOH and
NX32 memory expansions can each provide access to an SD card.

Hard disk images consist of 512 bytes of header information, 512 bytes of IDENTIFY in-
formation, followed by sector data in LSN order, 512 bytes each. If an image does not exist
when accessed, a 256MB image is created for you, as the header information may be difficult to
construct otherwise.

SD images contain no header information, just sector data in LSN order, 256-bytes each.

-load-hdX file Use file as the hard disk image for drive X (0 or 1).
-load-sd file Use file as the SD card image.

16

6 Peripherals

6.1 Keyboard

-keymap code Specify host keyboard layout. -keymap help for a list.
Default: ‘uk’

-kbd-bind hkey=[pre:]dkey Bind host key hkey to emulated key dkey.

-kbd-translate Start up in translated keyboard mode.

-type string Intercept ROM calls to type string into BASIC on startup.

The default mapping of host keys to emulated keys is based on the original positions of the
keys, with certain exceptions: cursor keys are mapped directly, Escape maps to the Dragon’s
BREAK key, and Home maps to CLEAR. Other keys may also be mapped to CLEAR if there is a
choice in your selected keymap that doesn’t conflict with a regular character in translated mode.

When binding keys with -kbd-bind, if the emulated key dkey is prefixed with "preempt:"
or "pre:", this binding preempts translation; useful for modifier keys. Interpretation of hkey
depends on which user-interface toolkit is in use, and it might be useful to run with -debug-ui
1 to see what the toolkit calls your host keys.

Special values for dkey are: ‘colon’, ‘semicolon’, ‘comma’, ‘minus’, ‘fullstop’, ‘period’,
‘dot’, ‘slash’, ‘at’, ‘up’, ‘down’, ‘left’, ‘right’, ‘space’, ‘enter’, ‘clear’, ‘break’, ‘escape’,
‘shift’, ‘alt’, ‘ctrl’, ‘control’, ‘f1’, ‘f2’.

For position-based mapping (untranslated), XRoar needs to be informed of the layout of the
host’s keyboard. If it is not the default (UK), use the ~keymap code option. This is basically
the equivalent of a pre-rolled list of ~kbd-bind options.

XRoar can also be put into translated keyboard mode, where characters typed on a PC
keyboard are translated into the equivalent keystrokes on the Dragon. Use the -kbd-translate
option to default to this mode. Press CTRL+Z at any time to toggle between the two modes.

In translated mode, SHIFT+Return is mapped to the Caps Lock combination (SHIFT+0 usu-
ally, SHIFT+ENTER on the Dragon 200-E). Similarly, SHIFT+Space is mapped to the pause output
combination (SHIFT+@ usually, SHIFT+Space on the Dragon 200-E).

The keyboards of the Dragon and Tandy CoCo operate in the same way, but the matrix
and/or key layouts differ. When you select a machine, the appropriate layout is selected for
you, but you can toggle between them by pressing CTRL+K, which can sometimes be useful when
running software designed for the other machine.

XRoar will simulate the ghosting effects inherent in a simple matrix design, but the accuracy
of this simulation will depend very much on your host keyboard, which vary greatly in the
amount of simultaneous keypresses they support (for more information, search for “NKRO”).

6.2 Joysticks

Analogue joysticks are very common peripherals for the Dragon and Tandy CoCo. Many games
require them, and some productivity applications even use them as a mouse-like input device.
Joysticks are electrically compatible between the machines, though some CoCo joysticks use a
6-pin DIN connector instead of 5-pin DIN, and these will not plug into the Dragon. On the
CoCo 3, this extra pin can carry the signal for an extra firebutton.

XRoar can simulate these analogue joysticks using a variety of input methods. There are a
few built-in joystick configuration profiles, or new ones can be defined. Here are the built-ins:

Name Description
‘joy0’ First two axes and first two buttons of first physical joystick

Chapter 6: Peripherals 17

‘joyl’ First two axes and first two buttons of second physical joystick
‘kjoy0’ Keyboard based virtual joystick using cursor keys and Left Alt.
‘mjoy0Q’ Mouse based virtual joystick mapped to screen position

If present, ‘joy0’ maps to the Dragon’s right joystick port, and ‘joyl’ to the left joystick
port. You can specify different profiles to map with -joy-right name or -joy-left name.
Select which joystick is mapped to each port at any time with the Hardware — Right joystick
or Hardware — Left joystick menus. You can also swap the left and right joystick mappings by
just pressing CTRL+SHIFT+J.

They keyboard-based virtual joystick can be quickly cycled through the ports by pressing
CTRL+J. The first press will map it to the right joystick, the second to the left joystick instead,
and pressing a third time unmaps it. You can change which virtual joystick is cycled in this way
with the -joy-virtual name option.

The MC-10 has no built-in joystick ports, but an expansion (that can not be used at the
same time as the 16K RAM expansion!) allows the connection of digital joysticks. These are
not yet supported by XRoar.

-joy name Create or modify named joystick profile. -joy help
lists currently defined profiles.
-joy-desc text Joysticks description shown in -joy help.

-joy-axis axis=input:[args] Configure joystick axis. —joy-axis help to list phys-
ical joysticks.

-joy-button btn=input: [args] Configure joystick button. -joy-button help to list
physical joysticks.

-joy-right name Map right joystick.
-joy-left name Map left joystick.
-joy-virtual name Specify the virtual joystick to cycle. Default: ‘kjoy0’

The axis and button mapping options used while configuring a profile need some explaining.

Configure axes with -joy-axis axis=input: [args]. The axis is either ‘X’ or ‘Y’ (or num-
bered 0-1).

Configure buttons with -joy-button button=input: [args]. The button is either 0 (first
button), or 1 (second button—only useful on the CoCo 3).

In both cases, the input selects a source for the input from the list below, and the args specify
which one to use.

Input Axis args Button args

‘physical’ joystick-index,[-|axis-index Jjoystick-index,button-index
‘keyboard’ key-name0,key-namel key-name

‘mouse’ screen-offset(,screen-offset1 button-number

The ‘-’ before the axis index when configuring a physical joystick will invert that axis. Key
names for the keyboard module depend on the underlying toolkit. The default screen offsets for
the mouse module are ‘X=2,254" and ‘Y=1.5,190.5’ which gives reasonable behaviour for some
games and utilities.

To list the physical joysticks seen by XRoar, with the index numbers to use in the options
above, specify either -joy-axis help or —joy-button help.

Joystick configuration is complex, but flexible. For example, you can combine input sources
by specifying different modules for each axis. This configuration example creates a profile called
‘mixed’ that uses the mouse for the X-axis and firebutton, but the keys A and Z on the keyboard
for the Y-axis. It then ensures this profile is the one used when you press CTRL+J.

joy mixed
joy—axis X=mouse:

Chapter 6: Peripherals 18

joy-axis Y=keyboard:a,z
joy-button mouse:

joy-virtual mixed

6.3 Printers

The Dragon machines have parallel printer ports, and XRoar supports these, sending output
either to a file, or through a command pipe. The pipe approach allows you to apply a filter to
the output, and/or send it to a real attached printer using normal Unix commands (SUB: check
whether Windows users can do this sort of thing yet).

The CoCo and MC-10 machines have serial printer ports. XRoar doesn’t support these
directly yet, but a limited form of print redirection is implemented using a ROM BASIC inter-
cept. This is enough to support BASIC commands like LLIST, but will not cope with programs
implementing their own serial routines.

-1lp-file file Append printer output to file.
-1p-pipe command Pipe printer output to command.

Use the -1p-file file option to send printer output to a file, or ~1p-pipe command to send
it through a pipe. Pressing CTRL+SHIFT+P will flush the current stream by closing it, so if you
are using a pipe, the filter will complete. The stream will be re-opened when any new data is
sent.

Under Unix, the enscript utility is good for processing output and sending it to a con-
figured printer, e.g. -1lp-pipe "enscript -B -N r -d printer-name". This will send a job to
your printer, using carriage returns as line feeds (the Dragon default), each time you press
CTRL+SHIFT+P (or exit the emulator).

19

7 Files

-load file Load or attach file. XRoar will try to do the right thing based on the
file type (usually determined by file extension).

-run file As -load, but try to autorun the file after attaching.

-load-tape file Attach file as tape image for reading. See Section 5.1 [Cassettes],
page 13.

-tape-write file Open file for tape writing. See Section 5.1 [Cassettes]|, page 13.

-load-fdX file Load disk image file file into drive X (0-3). See Section 5.2 [Floppy
disks], page 14.

-load-hdX file Use file as the hard disk image for drive X (0 or 1). See Section 5.3
[Hard disks|, page 15.

-load-sd file Use file as the SD card image. See Section 5.3 [Hard disks], page 15.

-lp-file file Append printer output to file. See Section 6.3 [Printers], page 18.

In general, files can be attached on the command line with -1oad file, or by pressing CTRL+L.
XRoar judges the type of file based on its filename extension. To attempt to intelligently autorun
a file, use -run file or press CTRL+SHIFT+L. See Section 1.5 [Running programs|, page 3, for
the methods XRoar will use to autorun a file.

Cassettes, Floppy disks, and Hard disks are each discussed in Chapter 5 [Storage media],
page 13. The other kinds of file recognised by XRoar are discussed here.

7.1 ROM cartridges

ROM cartridge images have a .rom or .ccc filename extension. Because XRoar supports other
types of cartridge, loading a ROM image actually just creates a cartridge instance of type ‘rom’.

7.2 Snapshots

XRoar can save out a snapshot of the emulated machine state and read the snapshots back in
later. To save a snapshot, press CTRL+S. When using CTRL+L to load a file, anything ending in
.sna will be recognised as a snapshot.

Most internal state should be dumped to the snapshot. External data like ROM images or
disk image files will be referenced by name, so when you read the snapshot back in, they need
to exist in the same place they were before.

State that is explicitly not included in snapshots includes Becker port DriveWire connections
and GDB listen parameters. These will use your local settings, which default to interacting with
the local host only.

Note that the snapshot format has changed since version 0.37 to accommodate the new
CoCo 3 and MC-10 support, along with other complex device state. The old snapshot format
is deprecated, but can still be read for now.

7.3 Binary files
File types containing raw binary data to be loaded into RAM:

Extension Description

.bin Binary file (DragonDOS or CoCo). XRoar can load these directly into
memory and optionally autorun them. Read-only

hex Intel hex record. An ASCII format that encodes binary data and where in

memory to load it. Read-only

Chapter 7: Files 20

7.4 Firmware ROM images
Firmware ROM image files are configured as part of a machine or a cartridge. They have a
filename extension of .rom or .dgn, and can be specified as:

e Complete path to a file.

e Base filename of an image, to be discovered within a search path.

e Base filename of an image, omitting the extension. XRoar will search as above, appending
the known ROM filename extensions.

e An ‘@ character followed by the name of a ROM list.

A ROM list is a comma-separated list of images, each following the rules above. ROM lists
may refer to other ROM lists. Define a ROM list with -romlist name=imagel, image]
View the defined ROM lists with -romlist-print.

To make life easier, the default image for each type of machine or cartridge usually refers to a
ROM list which contains all the corresponding filenames seen in the wild, the primary examples
being:

Firmware ROM ROM list Canonical image names
Dragon 32 BASIC ‘@dragon32’ d32.rom

Dragon 64 32K BASIC ‘@dragon64’ d64_1.rom

Dragon 64 64K BASIC ‘@dragon64_alt’ d64_2.rom

Dragon 200-E 32K BASIC ‘@dragon200e’ d200e_1.rom

Dragon 200-E 64K BASIC ‘@dragon200e_alt’ d200e_2.rom

Dragon 200-E Charset
Tandy Colour BASIC

Tandy Extended BASIC

Tandy Super ECB (CoCo 3)
Tandy Super ECB (PAL CoCo 3)
Tandy Microcolour BASIC

DragonDOS

Delta System
RS-DOS

)

‘@dragon200e_charset
‘@coco’

‘Qcoco_ext’

‘@coco3’

‘Qcoco3p’

‘Gmc10’
‘@dragondos_compat’

‘@delta’
‘@rsdos’
‘@rsdos_becker’

d200e_26.rom

basl13.rom, basl2.rom,
basll.rom, bas10.rom
extbasll.rom, extbasl10.rom
coco3.rom

coco3p.rom

mcl10.rom

dplus49b.rom, sdose6.rom,
ddos10.rom

delta.rom

diskll.rom, disk10.rom
hdbdw3bck.rom

RS-DOS with Becker port
Orchestra 90-CC

The default search path for images specified only as a base filename varies by platform, and
is detailed in Chapter 1 [Getting started], page 1. This path can can be overridden with the
option -rompath path, where path is a colon-separated list of directories to search.

‘orch90.rom’

The XROAR_ROM_PATH environment variable can also be used to specify the search path, but
this behaviour is deprecated and may be removed in a future version.

A CRC32 value is calculated and reported for each ROM image loaded. XRoar uses these
CRCs to determine whether certain breakpoints can be used (e.g. for fast tape loading). The
lists of CRCs matched can be defined in a similar way to ROM lists using the -crclist
list=crc[,crc]... option. Each crc is a 8-digit hex number preceded by ‘0x’, or the name of
a nested list preceded by ‘@’. Use this if you have a modified version of a BASIC ROM that
maintains compatible entry points with an original. View the current lists with ~crclist-print.

Sometimes it may be useful to force CRC matching so that breakpoints apply (e.g. you are
modifying a ROM image and don’t wish to have to add its CRC to the match list each time you
modify it). The -force-crc-match option forces the CRCs to be as if an original ROM image
were loaded.

21

8 User interface

8.1 User interface selection

The user interface depends on supporting toolkit packages as described in Section A.2 [Building
from source], page 26. Selection of user interface module may affect which other types of module
are available: in particular, video output is strongly tied to the user interface.

-ui module Select user-interface module. -ui help to list compiled-in
modules.

8.1.1 GTK+ user interface
Select with -ui gtk2.

This is the most full-featured user interface. It provides extensive dynamic menus, and control
tools for cassette and disk files. This is the preferred interface under Linux.

Only one video module is usable with this user interface: ‘gtkgl’.

8.1.2 SDL user interface
Select with —ui sdl.

More limited than the GTK+ interface, providing keyboard shortcuts and, in the Mac OS X
and Windows variants, some basic menus.

Under Mac OS X, many operations are usable by pressing Command+key as well as the usual

shortcut of CTRL+key.

8.1.3 NULL user interface

Select with —ui null.

Show nothing! This can actually be useful when running XRoar from a script or, if you like,
to act as a music player. To disable audio too, run with —ao null. XRoar will happily emulate
a machine for you with nothing to show for it.

8.2 Video output

-fs Start full-screen. Toggle full-screen with CTRL+F or F11.

-fskip frames Specify frameskip. Default is ‘0’. May be helpful on slower
machines.

-gl-filter filter Filtering method to use when scaling the screen. One of ‘linear’,
‘nearest’ or ‘auto’ (the default). OpenGL output modules only.

-invert-text Start up with inverted text mode.

-ccr renderer Composite video cross-colour renderer. One of ‘simple’ (very

fast), ‘6bit’ (fast, more accurate) or ‘simulated’ (slow, very
accurate). Default is ‘Bbit’.

Real NTSC machines start in one of two cross-colour states at random. Games often prompt
the user to “Press Enter if the screen is red”, for example. You can press CTRL+4, to cycle
through three modes: Off, Blue-red and Red-blue. On the CoCo 3, a fourth mode is included
that switches to the RGB output.

Inverted text mode may be toggled by pressing CTRL+SHIFT+I.

Chapter 8: User interface

8.3 Audio output

—ao module
—ao-device device
—ao-format format
—ao-rate hz

-ao—-channels n
—ao-fragments n
—ao-fragment-ms ms
—ao-fragment-frames n
—ao-buffer-ms ms
—ao-buffer-frames n
—ao—gain db

-volume volume

Select audio output module. -ao help for a list.
Module-specific device specifier. e.g. /dev/dsp for OSS.
Specify audio sample format. —ao-format help for a list.
Specify audio frame rate, where supported. The default is
taken from the operating system if possible, otherwise it will
usually be ‘48000’.

Specify number of channels (1 or 2). Default is usually ‘2’.
Specify number of audio fragments.

Specify audio fragment size in milliseconds.

Specify audio buffer size in frames.

Specify total audio buffer size in milliseconds.

Specify total audio buffer size in frames.

Specify audio gain in dB relative to 0 dBFS. Only negative
values really make sense here. Default: ‘-=3.0’

Older way to specify volume. Simple linear scaling, using values
0-100.

22

Audio latency is a concern for emulators, so XRoar allows the buffering characteristics to
be configured with the fragment and buffer options above. Not all audio modules support all
options, but setting the total audio buffer size will usually have an effect. Bear in mind that
any figures reported by XRoar reflect what it was able to request, and won’t include any extra
buffering introduced by the underlying sound system.

When the Orchestra 90-CC cartridge is attached, its stereo output needs to be mixed with
the Dragon’s normal audio. To allow a small amount of headroom for this, the default gain

is set to ‘=3.0’ (dB relative to full scale), but be aware that it would still be possible for this

to clip depending on what’s happening on the internal sound bus. A setting of ~ao-gain -9.0
would give plenty of headroom (at the expense of a quieter overall sound).

9 Debugging

-gdb
-gdb-ip address
-gdb-port port

-trace

—-debug-fdc flags
-debug-file flags
—-debug-gdb flags
—-debug-ui flags

-v level

--verbose level

-q

--quiet

-timeout n
-timeout-motoroff n

-snap-motoroff file

23

Enable GDB target.
Address of interface for GDB target. Default: ‘127.0.0.1’
Port for GDB target to listen on. Default: ‘65520’

Start with trace mode on. CTRL+V toggles.

Various per-subsystem debugging flags. The special value ‘-1’
enables all flags for the subsystem.

General debug verbosity (0-3). Default: ‘1’

Equivalent to -verbose 0.

Exit emulator after running for n seconds.

Exit emulator n seconds after cassette motor switches off, or end
of tape reached.

Write a snapshot to file each time the cassette motor switches
off, or end of tape reached.

XRoar can act as a remote target for GDB using a network socket. When GDB connects,

emulation is stopped. GDB can then inspect memory, instruct the target to set breakpoints
and watchpoints (read, write and access), single step or continue execution. A version of GDB
patched to specifically support 6809 targets can also perform disassembly and inspect registers.
For more information on how to use GDB, see the GDB Documentation (http://www.gnu.org/
software/gdb/documentation/).

Enable the GDB remote target with -gdb. The default IP and port for the target are
‘127.0.0.1" and ‘65520’. These can be overridden with the -gdb-ip and -gdb-port options.

XRoar also supports a simpler trace mode, where it will dump a disassembly of every instruc-
tion it executes to the console. Toggle trace mode on or off with CTRL+V. Trace mode can be
enabled from startup with the —trace option. Very useful when piped through less, as you can
use simple text searches.

Note that GDB support is not currently implemented for the 6803 used by the MC-10, but
trace mode is.

User-interface debugging flag can be enabled with -debug-ui value, where only one value
is currently supported:

0x0001

Hex & binary file debugging can be enabled with -debug-file value, where the value is a
bitwise ORing of the following:

Keyboard event debugging.

0x0001 Print summary information such as load or exec addresses.
0x0002 Hex dump of all data read into memory.
0x0004 Print filename block metadata when autorunning a tape.

Floppy controller debugging can be enabled with -debug-fdc value, where the value is a
bitwise ORing of the following:

0x0001 Show FDC commands.

0x0002 Show all FDC states.

0x0004 Hex dump of read/write sector data.
0x0008 Hex dump of Becker port conversation data.

http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/gdb/documentation/

Chapter 9: Debugging 24

0x0010 General FDC event debugging.

The GDB stub can also emit debug information about its own operation with -debug-gdb
value, where value is a bitwise ORing of:

0x0001 Connection open and close.
0x0002 Show packet data.

0x0004 Checksum reporting.
0x0008 Report on general queries.

The special value argument of -1 parses as all bits set, and so enables all corresponding debug
options.

XRoar prints various other informational messages to standard output by default, including
when the state of certain toggles is modified. Verbosity can be changed with the -verbose
level option. —quiet is equivalent to -verbose 0. Levels are:

0 Quiet. Only warnings and errors printed.

1 Print startup diagnostics and emulator state changes (default).
2 Report some emulated machine state changes.

3 Miscellaneous internal debugging.

XRoar can be told to exit after a number of (emulated) seconds with the -timeout seconds
option.

XRoar can quit a number of seconds after the cassette motor is switched off with the
-timeout-motoroff seconds option. This is useful in the case of automatic tape rewriting.
A value of 1 is usually sufficient to account for the brief motor click that occurs after header
blocks and during gapped loading.

Similarly, a snapshot can be automatically written after loading with the -snap-motoroff
file option. The file is overwritten each time the motor transitions to off. This can be used
to help analyse the machine state immediately after loading, before any autorun code has taken
effect (specifying a .ram snapshot may be particularly useful here for analysis).

To see debug output from the pre-built Windows binary, run it with -C as the first option to
allocate a console.

25

10 Acknowledgements

Early on, I made reference to the MAME 6809 core for clues on how the overflow bit in the
condition code register was handled.

Darren Atkinson’s Motorola 6809 and Hitachi 6309 Programmers Reference has been very
useful for 6309 support and fleshing out some of the illegal instructions on the 6809.

Alan Cox contributed the IDE code.

Tormod Volden contributed support for his NX32 and MOOH devices (including general SPI
and SD image support).

Greg Dionne and Ron Klein have been very helpful with information and testing of MC-10
related behaviour.

Various other people have also provided feedback or test cases that have helped nail down
bugs; read the Changelog for details.

And thanks to all the people on the Dragon Archive Forums (https://archive.
worldofdragon.org/phpBB3/), CoCoTALK! Discord and IRC that have provided helpful feed-
back and insight.

https://archive.worldofdragon.org/phpBB3/
https://archive.worldofdragon.org/phpBB3/

26

Appendix A Installation

A.1 Binary packages

Pre-built binary packages are available from the XRoar home page (https://www.6809.org.
uk/xroar/). If one is not available for your architecture, you will need to build from source.
XRoar should build and run on any POSIX-like system for which SDL version 2 is available.

You will also need BASIC ROM images—binary dumps of the firmware from an original
machine. The originals were part-written by Microsoft, so they are not distributed in the XRoar
packages.

A.1.1 Mac OS X binary package

Download and unzip the appropriate .zip distribution for your system. Drag the application
icon to /Applications/.

For troubleshooting or testing options, it’s often a good idea to run from the command line,
but application packages don’t make that trivial. A symbolic link to somewhere in your PATH is
all that’s required. e.g.:

$ sudo 1ln -s /Applications/XRoar.app/Contents/Mac0S/xroar \
/usr/local/bin/xroar

After this, you can start the emulator by simply typing xroar followed by any command line
options.

ROM images should be placed in a directory you create under your HOME named
~/Library/XRoar/roms/ (not the system directory, /Library/). Name any configuration file
you create “/Library/XRoar/xroar.conf.

The Mac OS X build provides a menu for access to certain features, and often accepts the
more familiar Command+key in place of the CTRL+key shortcuts listed in this manual.

A.1.2 Windows binary package

Download and unzip the appropriate .zip distribution for your system.

The easiest way forward is to simply put ROM images into the directory created when
you unzip the distribution, and then run the .exe straight from there. You can also put any
configuration file (xroar.conf) here.

However, if you want to avoid having to move files around each time you upgrade, you
can create Documents/XRoar to contain your configuration file, and a subdirectory of that,
Documents/XRoar/roms for ROM images.

Note when troubleshooting that the logging from the Windows binary is probably only going
to be visible if you run it with the -C option (must be the first option) to allocate a console.

The Windows build provides menu-based access to certain features.

A.2 Building from source

A.2.1 Dependencies

If there is no binary package for your system, you will have to build from source. XRoar can use
various backend toolkits, and you will need to ensure you have their development files installed.
If you're using Debian, this can (at the time of writing) be achieved with the following simple
command:

$ sudo apt install build-essential libsndfilel-dev libgtk2.0-dev \
libgtkglextl-dev libasound2-dev

https://www.6809.org.uk/xroar/
https://www.6809.org.uk/xroar/

Appendix A: Installation 27

Under Mac OS X, first be sure to install Apple’s Xcode (https://developer.apple.com/
xcode/) package. The easiest way to then ensure you have XRoar’s dependencies available is to
use a system like Homebrew (https://brew.sh/) or MacPorts (http://www.macports.org/).
For Homebrew, the following command will install the required dependencies:

$ brew install libsndfile sdl2

Otherwise, you’ll have to do a bit of platform-specific research to ensure you have all the
dependencies for a full build:

GTK+ (http://www.gtk.org/), the GIMP toolkit, provides the most full-featured user in-
terface. It is only usable as such if you also have GtkGlExt (http://projects.gnome.org/
gtkglext/), an OpenGL extension used to provide video output. Otherwise, it can provide a
file requester for use by other user interfaces. Version 2 only.

SDL (http://www.libsdl.org/), Simple Directmedia Layer, provides a slightly more basic
user experience. Menus are added using native code under Mac OS X and Windows; any other
target using SDL will support only keyboard shortcuts. Unless you are building for Linux, SDL
is required to use joysticks. Version 2 required.

POSIX Regular Expressions are used in option parsing, so TRE (https://laurikari.net/
tre/about/) is required on non-POSIX platforms (e.g. Windows).

Other supported audio APIs: OSS, ALSA, PulseAudio, CoreAudio. Some other options are
still in the code base, but have not been tested in a while.

libsndfile (http://www.mega-nerd.com/libsndfile/) is recommended to enable support for
using audio files as cassette images.

A.2.2 Compilation

Once you have the dependencies, building XRoar follows a familiar procedure:!

$ gzip -dc xroar-1.0.8.tar.gz | tar xvf -
cd xroar-1.0.8

./configure

make

sudo make install

€ N H P

The configure script has a lot of options guiding what it tests for, specifying cross-
compilation, changing the install path, etc. List them all with the -—help option.

By default, configure will set up an install prefix of /usr/local, but this can be changed
by using the —--prefix=path option.

Once built, run make install as root (or use sudo, as in the example above) to install
the binary and info documentation on your system. The executable is called xroar. ROM
images should be placed either in your home directory as ~/.xroar/roms/, or under the in-
stallation prefix as prefix/share/xroar/roms/. Any configuration file should be created as
~/ .xXroar/xroar.conf.

XRoar can be built on one platform to run on another. The Windows binary package
is built like this. To specify a cross-compile, use the —--host=host argument to configure.
For example, to build for Windows, you might use ‘./configure --host=1686-w64-mingw32’.
Getting everything just so for a cross-build can be a tricky procedure, and the details are beyond
the scope of this manual.

XRoar can be built to a WebAssembly target using Emscripten (https://emscripten.org/
). With the SDK installed, run emconfigure ./configure —-enable-wasm to set up the build
environment. Build with emmake make. HTML /JavaScript and CSS examples for interfacing to
the output are included in the wasm/ subdirectory.

Lrf you have cloned the git repository, you will need GNU Build System packages installed: ‘autoconf’, etc.
Running ./autogen.sh should then generate the configure script, which you can run as normal.

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://brew.sh/
http://www.macports.org/
http://www.gtk.org/
http://projects.gnome.org/gtkglext/
http://projects.gnome.org/gtkglext/
http://www.libsdl.org/
https://laurikari.net/tre/about/
https://laurikari.net/tre/about/
http://www.mega-nerd.com/libsndfile/
https://emscripten.org/
https://emscripten.org/

28

Appendix B Keyboard shortcuts

A summary of commonly available keyboard shortcuts.

CTRL+[1-4]

CTRL+SHIFT+[1-4]

CTRL+ [5-8]

CTRL+SHIFT+[5-8]

CTRL+A
CTRL+D
CTRL+SHIFT+D
CTRL+E
CTRL+F

or F11
CTRL+SHIFT+H

or PAUSE
CTRL+SHIFT+I
CTRL+J
CTRL+SHIFT+J
CTRL+K
CTRL+L
CTRL+SHIFT+L
CTRL+M
CTRL+SHIFT+P
CTRL+Q
CTRL+R
CTRL+SHIFT+R
CTRL+S
CTRL+T
CTRL+V
CTRL+W
CTRL+Z
F12
SHIFT+F12

Insert disk into drive 1-4.

Create new disk in drive 1-4.

Toggle write enable on disk in drive 1-4.

Toggle write back on disk in drive 1-4.

Cycle through cross-colour modes (and RGB on CoCo 3).
Open disk control tool (GTK+ only).

Flush disk images.

Toggle cartridge on/off - reset to take effect.

Toggle full screen mode.

Halt the CPU (not on the MC-10).

Toggle text mode inverse video.

Cycle through joystick emulation modes (None, Right, Left).
Swap left and right joysticks.

Toggle Dragon/CoCo keyboard layout (not on the MC-10).
Load a file.

Load and attempt to autorun a file.

Toggle menubar.

Flush printer output.

Quit emulator.

Soft reset emulated machine.

Hard reset emulated machine.

Save a snapshot.

Open the tape control tool (GTK+ only).

Toggle trace mode.

Attach a virtual cassette file for writing,.

Enable keyboard translation mode.

Run at maximum speed while held.

Maximum speed toggle.

Appendix C File formats

XRoar recognises most file types by their file extension.

Extension

.cas, .cl0
.bas, .asc

.wav

.dmk

.jvec, .0s89, .dsk
.vdk

.sna

.ram

.bin, .dgn, .cco
.hex

.rom, .ccc

Description

Compact cassette image. CUE data can optionally mark up silence
and the wavelength to use for each bit.

ASCII BASIC files. XRoar will wrap the ASCII text in the appropri-
ate file structure to present to the emulated machine as saved ASCII
BASIC. Does not work on the MC-10. Read-only.

Standard audio data file can be used as a cassette image.

Disk image file in a format defined by David Keil. These images store
a lot of information about the structure of a disk and support both
single and double density data.

Disk image file in a basic sector-by-sector format with optional header
information.

Another disk image file format, used by PC-Dragon.

XRoar-specific snapshots preserve machine state. Old v1 snapshots
can still be read, but writing a snapshot uses the new v2 format.

When a .ram extension is given while writing a snapshot, a simple
RAM dump is generated instead. Write-only.

Binary file in DragonDOS or RS-DOS format (autodetected). Read-
only. .,

Intel hex record. An ASCII format that encodes binary data and
where in memory to load it. Read-only.

ROM image file. Simple binary dump of a ROM IC. Machine firmware
images and ROM cartridge images are in this format. Read-only.

29

Appendix D Option list

Options may be specified in the configuration file, xroar.conf, or on the command line. The

leading dash (‘-’) is not required in the configuration file.

Startup options

-C
-c
-n
-n

Allocate a console window to see debug messages (Windows-only).

file
o-c
o-builtin

Specify a different configuration file.
Don’t read the configuration file.
Disable built-in configuration. Unless you also define a machine

yourself, XRoar will abort.

Machines

-m
-d

—-m

name,
efault-machine name
achine name

-machine-desc text
-machine-arch arch
-machine-keyboard type
-machine-cpu cpu

-bas rom

-extbas rom

—altbas rom

-no-bas,

-no-extbas,

-no-altbas

-ext—-charset rom
-tv-type type

-tv-input input

-vdg-type type
-ram kbytes

-machine-cart name
-no-machine-cart

See Chapter 3 [Machines], page 7.
Default machine profile to select on startup.

Create or modify named machine profile. The remaining op-
tions configure the profile. -machine help lists currently de-
fined profiles.

Description shown in -machine help and menu options.
Base machine architecture. See Chapter 3 [Machines], page 7,
for a list. ‘dragon32, dragon64, coco, coco3’ or ‘mcl0’.
Override the type of keyboard attached to machine. ‘dragon,
dragon200e, coco’ or ‘coco3d’.

Fitted CPU. One of ‘6809’ or ‘6309’. Not applicable to the
MC-10.

ROM image for Colour BASIC (CoCo) or Microcolour BA-
SIC (MC-10).

ROM image for Extended BASIC (Super Extended BASIC
on the CoCo 3).

ROM image for 64K-mode Extended BASIC (Dragon 64,
Dragon 200-E).

Indicate the corresponding ROM is not fitted in this machine.

ROM image to use for external character generator.

One of ‘pal’, ‘ntsc’ or ‘pal-m’. PAL-M is treated the
same as NTSC, except with magenta-green cross-colour in-
stead of blue-red (simulated composite rendering only at the
moment).

One of ‘cmp’ (composite video, no cross-colour), ‘cmp-br’
(composite video, blue-red cross-colour), ‘cmp-rb’ (compos-
ite video, red-blue cross-colour) or ‘rgb’ (RGB video, CoCo
3 only).

Indicate the VDG variant fitted. One of ‘6847 or ‘6847t1’.
Amount of RAM fitted in kilobytes. Valid sizes are 4-64K for
Dragon and Tandy CoCo 1/2; 128K or 512K for the Tandy
CoCo 3; 2K, 4K or 20K for the Tandy MC-10.

Default cartridge to attach.

Indicate that XRoar is not to automatically attempt to at-
tach a DOS cartridge to this machine (the default is to try).

Appendix D: Option list

Cartridges
-cart name

-cart-desc text
—-cart—-arch arch

—-cart-rom file
—-cart-rom2 file
—-cart-becker
—-cart—-autorun

Multi-Pak Interface
-mpi-slot slot
-mpi-load-cart [slot]

Becker port

-becker
-becker-ip address
-becker-port port

Cassettes
-load-tape file
-tape-write file
—-tape-pan position

-tape-hysteresis pc
-no-tape-fast
-no-tape-pad-auto
-tape-ao-rate hz

-tape-rewrite
-tape-rewrite-gap-ms

-tape-rewrite-leader

-snap-motoroff file

Floppy disks
-load-fdX file
-disk-write-back
-no-disk-auto-o0s9
-no-disk-auto-sd

See Chapter 4 [Cartridges], page 10.

Create or modify named cartridge profile. —cart help lists cur-
rently defined profiles. The remaining options configure the
profile.

Cartridge description shown in -cart help and menu options.
Cartridge architecture. See Section 4.2 [Cartridge types],
page 10, for a list.

The ROM image specified will be mapped from $C000.

The ROM image specified will be mapped from $E000.

Enable Becker port where supported.

Auto-start cartridge using FIRQ.

See Section 4.2.8 [Multi-Pak Interface], page 12.
Initially select slot (0-3).
=name Insert cartridge into next or numbered slot.

See Section 4.2.9 [Becker port|, page 12.

Prefer becker-enabled DOS cartridge when picked automatically.
Address or hostname of DriveWire server. Default: ‘127.0.0.1’
Port of DriveWire server. Default: ‘65504’

See Section 5.1 [Cassettes|, page 13.
Attach file as tape image for reading.
Open file for tape writing.
Pan stereo input. Floating point number from ‘0.0’ (full
left) to ‘1.0’ (full right). The default of ‘0.5 mixes the
two channels equally.
Read hysteresis as percentage of full scale (default is 1%).
Disable fast tape loading. The default is enabled, which
uses ROM intercepts to speed up loading.
Disable automatic padding of short leaders in CAS files (see
below).
Set tape writing frame rate to hz (affects audio file output,
e.g. WAV). Default: ‘9600’Hz.
Enable tape rewriting (see below).

ms Gap length in milliseconds to write in rewrite mode (1-
5000ms, default 500ms).

n Length of leaders in bytes to write in rewrite mode (1-2048
bytes, default 256).
Write a snapshot to file each time the cassette motor is
switched off.

See Section 5.2 [Floppy disks|, page 14.

Load disk image file file into drive X (0-3).

Default to enabling write-back for disk images.

Don’t try to detect headerless OS-9 JVC disk images.
Don’t assume single density for 10 sector-per-track disks.

31

Appendix D: Option list

Hard disks
-load-hdX file
-load-sd file

Keyboard
-keymap code

-kbd-bind hkey=[pre:]dkey

-kbd-translate
-type string

Joysticks
—-joy name

-joy-desc text

-joy-axis axis=input: [args]

-joy-button btn=input: [args]

-joy-right name
-joy-left name
-joy-virtual name

Printers
-lp-file file
-lp-pipe command

Files
-load file

-run file
-load-tape file

—tape-write file
-load-fdX file

-load-hdX file

-load-sd file
-lp-file file

Firmware ROM images

-rompath path

-romlist name=1ist

-romlist-print

—crclist name=1list

-crclist-print
-force-crc-match

See Section 5.3 [Hard disks|, page 15.
Use file as the hard disk image for drive X (0 or 1).
Use file as the SD card image.

See Section 6.1 [Keyboard], page 16.

Specify host keyboard layout. -keymap help for a list.
Default: ‘uk’

Bind host key hkey to emulated key dkey.

Start up in translated keyboard mode.

Intercept ROM calls to type string into BASIC on startup.

See Section 6.2 [Joysticks|, page 16.

Create or modify named joystick profile. -joy help
lists currently defined profiles.

Joysticks description shown in -joy help.

Configure joystick axis. —~joy—-axis help to list phys-
ical joysticks.

Configure joystick button. -joy-button help to list
physical joysticks.

Map right joystick.

Map left joystick.

Specify the virtual joystick to cycle. Default: ‘kjoy0’

See Section 6.3 [Printers|, page 18.
Append printer output to file.
Pipe printer output to command.

See Chapter 7 [Files], page 19.

Load or attach file. XRoar will try to do the right thing based on the
file type (usually determined by file extension).

As -load, but try to autorun the file after attaching.

Attach file as tape image for reading. See Section 5.1 [Cassettes],
page 13.

Open file for tape writing. See Section 5.1 [Cassettes|, page 13.
Load disk image file file into drive X (0-3). See Section 5.2 [Floppy
disks], page 14.

Use file as the hard disk image for drive X (0 or 1). See Section 5.3
[Hard disks|, page 15.

Use file as the SD card image. See Section 5.3 [Hard disks|, page 15.
Append printer output to file. See Section 6.3 [Printers], page 18.

See Section 7.4 [Firmware ROM images|, page 20.

Set ROM search path. A colon-separated list of directories.
Define a ROM list.

Print defined ROM lists and exit.

Define a CRC list.

Print defined CRC lists and exit.

Force per-architecture CRC matching.

Appendix D: Option list

User interface
—ui module

Video output
-fs
-fskip frames

-gl-filter filter

—-invert-text
—-ccr renderer

Audio output

—ao module
—ao-device device
—ao—-format format
-ao-rate hz

—ao—-channels n
-ao-fragments n
-ao—-fragment-ms ms
—ao-fragment-frames n
—ao-buffer-ms ms
—ao-buffer-frames n
-ao-gain db

-volume volume

Debugging

-gdb

-gdb-ip address
-gdb-port port

-trace

—-debug-fdc flags
-debug-file flags
—-debug-gdb flags
—-debug-ui flags
-v level
--verbose level
-q

--quiet

-timeout n

33

See Section 8.1 [User interface selection], page 21.
Select user-interface module. -ui help to list compiled-in
modules.

See Section 8.2 [Video output], page 21.

Start full-screen. Toggle full-screen with CTRL+F or F11.

Specify frameskip. Default is ‘0. May be helpful on slower
machines.

Filtering method to use when scaling the screen. One of ‘linear’,
‘nearest’ or ‘auto’ (the default). OpenGL output modules only.
Start up with inverted text mode.

Composite video cross-colour renderer. One of ‘simple’ (very
fast), ‘6bit’ (fast, more accurate) or ‘simulated’ (slow, very
accurate). Default is ‘Bbit’.

See Section 8.3 [Audio output|, page 22.

Select audio output module. -ao help for a list.
Module-specific device specifier. e.g. /dev/dsp for OSS.
Specify audio sample format. ~ao-format help for a list.
Specify audio frame rate, where supported. The default is
taken from the operating system if possible, otherwise it will
usually be ‘48000’.

Specify number of channels (1 or 2). Default is usually ‘2’.
Specify number of audio fragments.

Specify audio fragment size in milliseconds.

Specify audio buffer size in frames.

Specify total audio buffer size in milliseconds.

Specify total audio buffer size in frames.

Specify audio gain in dB relative to 0 dBFS. Only negative
values really make sense here. Default: ‘-3.0’

Older way to specify volume. Simple linear scaling, using values
0-100.

See Chapter 9 [Debugging], page 23.

Enable GDB target.

Address of interface for GDB target. Default: ‘127.0.0.1’

Port for GDB target to listen on. Default: ‘65520’

Start with trace mode on. CTRL+V toggles.

Various per-subsystem debugging flags. The special value ‘-1’
enables all flags for the subsystem.

General debug verbosity (0-3). Default: ‘1’

Equivalent to -verbose 0.

Exit emulator after running for n seconds.

Appendix D: Option list

—timeout-motoroff n

-snap-motoroff file

Help options
-config-print
-config-print-all
-h, —-help

-V, ——version

34

Exit emulator n seconds after cassette motor switches off, or end
of tape reached.

Write a snapshot to file each time the cassette motor switches
off, or end of tape reached.

Print configuration to standard out.

Print configuration to standard out, including defaults.
Print help text and exit.

Print version information and exit.

In addition, various other options accept ‘help’ as an argument to print a list of values they

accept.

	1 Getting started
	Introduction
	Notes for version 1.x
	Prerequisites
	User-interface introduction
	Running programs
	Troubleshooting
	No BASIC ROM
	Program lacks colour
	Can't access HD/SD image
	Debug messages

	2 Configuration
	The configuration file
	Command line options

	3 Machines
	Machine profiles
	Machine architectures
	Dragon 32
	Dragon 64
	Tandy Colour Computer 1/2
	Tandy MC-10
	Tandy Colour Computer 3

	4 Cartridges
	Cartridge profiles
	Cartridge types
	DragonDOS
	Delta
	RS-DOS
	Glenside IDE controller
	NX32 and MOOH cartridges
	Games Master Cartridge
	Orchestra 90-CC sound cartridge
	Multi-Pak Interface
	Becker port

	5 Storage media
	Cassettes
	Floppy disks
	Hard disks

	6 Peripherals
	Keyboard
	Joysticks
	Printers

	7 Files
	ROM cartridges
	Snapshots
	Binary files
	Firmware ROM images

	8 User interface
	User interface selection
	GTK+ user interface
	SDL user interface
	NULL user interface

	Video output
	Audio output

	9 Debugging
	10 Acknowledgements
	A Installation
	Binary packages
	Mac OS X binary package
	Windows binary package

	Building from source
	Dependencies
	Compilation

	B Keyboard shortcuts
	C File formats
	D Option list

