XRoar 0.37.1

Dragon and Tandy Colour Computer emulator

This manual is for XRoar (version 0.37.1), a Dragon and Tandy Colour Computer emulator.
Copyright (©) 2021 Ciaran Anscomb.

Table of Contents

1 Getting started......... ... 1
1.1 Installation & runningo 1
1.1.1 Mac OS X binary package.t e 1

1.1.2 Windows binary packagecouiiiii i e 1

1.2 Building from SOUICE.\ttt e 1
1.2.1 Dependenciest e 1

1.2.2 Compilation e 2

1.3 RUNNING PTOGIamISttt ettt ettt e ettt e et 3
1.4 Configuration e 3

2 Hardware emulation 5
2.1 Machineso e 5
2.2 CArE I A S . o vttt 6
2.2.1 Multi-Pak Interfaceo 7

2.2.2 Becker POTt ..o 7

3 Files ... oo 9
B T O O T v PP 9
3.2 Floppy Disks ..ot 10
3.3 Hard Diskso 10
3.4 ROM cartrid@es - ..o vv ettt 11
3.0 SNAPSIOTS . ..t 11
3.6 Binary files 11
3.7 Firmware ROM Imagesottt e 12

4 Userinterface 13
4.1 User interface module. ... 13
4.1.1 GTEKH user Interface. 13

4.1.2 SDL user interface 13

4.2 VIdeo OUtDUL « o ettt e 13
4.3 Audio OUbPUL . ..o 14
4.4 Keyboard.t 14
4.5 JOysticks ..o 15
4.6 Printingottt 16
4.7 DebUGEING . .« oo 16
4.8 Keyboard shortcuts. ... 17

5 Troubleshooting........... 19

6 Acknowledgements............ 20

1 Getting started

1.1 Installation & running

Pre-built binary packages are available from the XRoar home page (https://www.6809.org.
uk/xroar/). If one is not available for your architecture, you will need to build from source.
XRoar should build and run on any POSIX-like system for which SDL version 2 is available.

You will also need BASIC ROM images—binary dumps of the firmware from an original
machine. The originals were part-written by Microsoft, so they are not distributed in the XRoar
packages.

1.1.1 Mac OS X binary package

Download and unzip the appropriate .zip distribution for your system. Drag the application
icon to /Applications/.

For troubleshooting or testing options, it’s often a good idea to run from the command line,
but application packages don’t make that trivial. A symbolic link to somewhere in your PATH is
all that’s required. e.g.:

$ sudo 1ln -s /Applications/XRoar.app/Contents/Mac0S/xroar \
/usr/local/bin/xroar

After this, you can start the emulator by simply typing xroar followed by any command line
options.

ROM images should be placed in a directory you create under your HOME named
~/Library/XRoar/roms/ (not the system directory, /Library/). Name any configuration file
you create “/Library/XRoar/xroar.conf.

The Mac OS X build provides a menu for access to certain features, and often accepts the
more familiar Command+key in place of the Ctrl+key shortcuts listed in this manual.

1.1.2 Windows binary package
Download and unzip the appropriate .zip distribution for your system.

The easiest way forward is to simply put ROM images into the directory created when
you unzip the distribution, and then run the .exe straight from there. You can also put any
configuration file (xroar.conf) here.

However, if you want to avoid having to move files around each time you upgrade, you
can create Documents/XRoar to contain your configuration file, and a subdirectory of that,
Documents/XRoar/roms for ROM images.

Note when troubleshooting that the logging from the Windows binary is probably only going
to be visible if you run it with the -C option (must be the first option) to allocate a console.

The Windows build provides menu-based access to certain features.

1.2 Building from source

1.2.1 Dependencies

If there is no binary package for your system, you will have to build from source. XRoar can use
various backend toolkits, and you will need to ensure you have their development files installed.
If you're using Debian, this can (at the time of writing) be achieved with the following simple
command:

$ sudo apt install build-essential libsndfilel-dev libgtk2.0-dev \
libgtkglextl-dev libasound2-dev

https://www.6809.org.uk/xroar/
https://www.6809.org.uk/xroar/

Chapter 1: Getting started 2

Under Mac OS X, first be sure to install Apple’s Xcode (https://developer.apple.com/
xcode/) package. The easiest way to then ensure you have XRoar’s dependencies available is to
use a system like Homebrew (https://brew.sh/) or MacPorts (http://www.macports.org/).
For Homebrew, the following command will install the required dependencies:

$ brew install libsndfile sdl2

Otherwise, you’ll have to do a bit of platform-specific research to ensure you have all the
dependencies for a full build:

GTK+ (http://www.gtk.org/), the GIMP toolkit, provides the most full-featured user in-
terface. It is only usable as such if you also have GtkGlExt (http://projects.gnome.org/
gtkglext/), an OpenGL extension used to provide video output. Otherwise, it can provide a
file requester for use by other user interfaces.

SDL (http://www.libsdl.org/), Simple Directmedia Layer, provides a slightly more basic
user experience. Menus are added using native code under Mac OS X and Windows; any other
target using SDL will support only keyboard shortcuts. Unless you are building for Linux, SDL
is required to use joysticks. Version 2 required.

POSIX Regular Expressions are used in option parsing, so TRE (https://laurikari.net/
tre/about/) is required on non-POSIX platforms (e.g. Windows).

Other supported audio APIs: OSS, ALSA, PulseAudio, CoreAudio. Some other options are
still in the code base, but have not been tested in a while.

libsndfile (http://www.mega-nerd.com/libsndfile/) is recommended to enable support for
using audio files as cassette images.

1.2.2 Compilation
Once you have the dependencies, building XRoar follows a familiar procedure:

$ gzip -dc xroar-0.37.1.tar.gz | tar xvf -
$ cd xroar-0.37.1

$./configure

$ make

$ sudo make install

The configure script has a lot of options guiding what it tests for, specifying cross-
compilation, changing the install path, etc. List them all with the --help option.

By default, configure will set up an install prefix of /usr/local, but this can be changed
by using the —--prefix=path option.

Once built, run make install as root (or use sudo, as in the example above) to install
the binary and info documentation on your system. The executable is called xroar. ROM
images should be placed either in your home directory as ~/.xroar/roms/, or under the in-
stallation prefir as prefix/share/xroar/roms/. Any configuration file should be created as
~/.xroar/xroar.conf.

XRoar can be built on one platform to run on another. The Windows binary package
is built like this. To specify a cross-compile, use the --host=host argument to configure.
For example, to build for Windows, you might use ‘./configure —~host=1686-w64-mingw32’.
Getting everything “just so” for a cross-build can be a tricky procedure, and the details are
beyond the scope of this manual.

XRoar can be built to a WebAssembly target using Emscripten (https://emscripten.org/
). With the SDK installed, run emconfigure ./configure --enable-wasm to set up the build
environment. Build with emmake make. HTML/JavaScript and CSS examples for interfacing to
the output are included in the wasm/ subdirectory.

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://brew.sh/
http://www.macports.org/
http://www.gtk.org/
http://projects.gnome.org/gtkglext/
http://projects.gnome.org/gtkglext/
http://www.libsdl.org/
https://laurikari.net/tre/about/
https://laurikari.net/tre/about/
http://www.mega-nerd.com/libsndfile/
https://emscripten.org/
https://emscripten.org/

Chapter 1: Getting started 3

1.3 Running programs

Images of ROM cartridges, cassettes and disks can all be attached by pressing Ctrl+L. Cassettes
will be positioned at the beginning of the “tape” and disks will be inserted into the first drive.

To attach an image and try to automatically start it, press Ctrl+Shift+L instead. XRoar
will try and start the program using the normal method for the type of image:

e If a BASIC program is found on a cassette, XRoar types “CLOAD”, waits for the program
to load, then types “RUN”.

e For machine code programs on cassette, XRoar types “CLOADM?” if they appear to load in
an autorun fashion, otherwise “CLOADM:EXEC”. Special built-in rules try and recognise
some programs and issue a customised series of commands.

e If a ROM cartridge is inserted, the emulated machine is power cycled.
o If a disk image is autorun, XRoar types “BOOT” (Dragon) or “DOS” (CoCo).

If you have trouble with a program, refer to its loading instructions: it may require a different
series of commands to get going. If you still have issues, see Section 2.2 [Cartridges|, page 6,
Section 3.1 [Cassettes], page 9, or Section 3.2 [Floppy Disks], page 10.

The keyboard layout of modern machines is not identical to that of the Dragon, so XRoar
provides two ways of working. The default, “untranslated”, is to map key positions as closely
as possible (e.g. the key to the right of P maps to @). Pressing Ctrl+Z toggles “translated”
mode, which tries to map key symbols closely instead (e.g. pressing ’ will press Shift+7 in the
emulated machine).

In addition, a couple of keys aren’t always available on modern keyboads, so Escape maps
to the Dragon’s BREAK key, and Home maps to CLEAR. See Section 4.4 [Keyboard], page 14.

XRoar will make use of attached joysticks, but can also emulate them with the cursor keys
and Left Alt. Press Ctrl+J to cycle through three emulation modes: No joystick emulation
(default), Right joystick, Left joystick. See Section 4.5 [Joysticks], page 15.

1.4 Configuration

This manual details the options available for configuring XRoar. Each option can be passed on
the command line or placed in a configuration file called xroar.conf. xroar.conf is read first,
and any command line options then take precedence. Directives are listed in xroar.conf one
per line.

Lines in the configuration file each contain an option followed by whitespace followed by a
value. Trailing whitespace is ignored. Empty lines are skipped, and any line where the first
non-whitespace character is a hash (‘#’) is treated as a comment.

An option may be preceded by leading dashes as from the command line, but within the
configuration file they are not necessary. Most options may be preceded by ‘no-’ to invert their
meaning or clear their value.

If a value contains special characters, or if you want trailing whitespace to be included in the
value, you must “escape” those characters. Sections contained within pairs of single or double
quotes are escaped, except the backslash (‘\’) which introduces an escape sequence:

Sequence Description

\0’ Null (NUL), ASCII 0. Note that this is only permitted when not followed by
another octal digit, as it may be confused with an octal byte, so it may be
preferable to use ‘\x00’ instead.

‘\a’ Bell (BEL), ASCII 7, no equivalent on the Dragon keyboard.

‘\b’ Backspace (BS), ASCII 8, LEFT.

Chapter 1: Getting started 4

‘\e’ Escape (ESC), ASCII 27, no equivalent on the Dragon keyboard, but mapped
to BREAK by the -type option.

£’ Form Feed (FF), ASCII 12, CLEAR.

‘\n’ Newline (NL), ASCII 10, DOWN. Not usually used by the Dragon as a line
ending, instead try ‘\r’.

\r’ Carriage Return (CR), ASCII 13, ENTER.

\t’ Horizontal Tab (HT), ASCII 9, RIGHT.

v’ Vertical Tab (VT), ASCII 11, no equivalent on the Dragon keyboard.

‘\nnn’ 8-bit byte with value specified as a three-digit octal number, nnn.

‘\xhh’ 8-bit byte with value specified as a two-digit hexadecimal number, hh.

‘\uhhhh’ 16-bit Unicode codepoint specified as a four-digit hexadecimal number, hhhh.

Internally, this will be encoded as UTF-8.

Any other character following a backslash—including another backslash—is included verba-
tim. For example, this will be necessary in the configuration file under Windows when file paths
include the backslash as a directory separator.

However, on the command line, it is assumed that your shell will handle argument quoting,
thus any quote characters will be included verbatim. Escape sequences are still parsed, except in
the instance that an option expects a filename, as shells often use their own escaping mechanisms
when autocompleting filename arguments.

Section 1.1 [Installation], page 1, and Section 1.2.2 [Compilation], page 2, list good de-
fault locations for xroar.conf, but it is actually searched for in a list of directories. You can
override this search path with the XROAR_CONF_PATH environment variable, which contains a
colon-separated (‘:’) list of directories. Here are the defaults:

Platform Default XROAR_CONF_PATH

Unix/Linux ~/.xroar:prefix/etc:prefix/share/xroar

Mac OS X “/Library/XRoar:~/.xroar:prefix/etc:prefix/share/xroar

Windows :"\Documents\XRoar: “\AppData\Local\XRoar: “\AppData\Roaming\XRoar

Note the leading colon (‘:’) in the Windows default indicates an empty entry, meaning it will
look in the current working directory first (i.e. you can put xroar.conf into the directory from
which you run XRoar).

A leading tilde character (‘~’) indicates the user’s home directory: the HOME environment
variable on Unix systems, or USERPROFILE on Windows. prefiz is the installation prefix, which
is usually /usr/local.

To bypass the search path and start XRoar using a specific configuration file, pass -c
filename as the very first option to XRoar.

To print the current configuration to standard output (suitable for redirection to a config file),
run with -config-print. This will include all the built-in machine and cartridge definitions.
For a complete version including default values, use -config-print-all.

2 Hardware emulation

2.1 Machines

With no other options, XRoar searches the ROM path and determines which supported machine
has firmware ROM images are available. It tries in this order: Dragon 64, Dragon 32, Tandy
CoCo. This can be overridden with the -default-machine name option. XRoar has built-in
configurations for the following machines:

Name Description
‘dragon32’ Dragon 32 (PAL).
‘dragon64’ Dragon 64 (PAL).
‘dragon200e’ Dragon 200-E (PAL).

‘tano’ Tano Dragon (NTSC).

‘coco’ Tandy Colour Computer (PAL).
‘cocous’ Tandy Color Computer (NTSC).
‘mx1600’ Dynacom MX-1600 (PAL-M).

You can create new machine configurations or reconfigure existing ones. Select a machine
configuration with -machine name, and use the following options to modify it:

-machine-desc name
Description shown in -machine help.

-machine-arch arch
Base machine architecture. One of ‘dragon64’, ‘dragon32’ or ‘coco’.

-machine-cpu cpu
Fitted CPU. One of ‘6809’ or ‘6309’. Hitachi 6309 support is not as well tested.

-bas rom ROM image to use for Colour BASIC (CoCo only).

-extbas rom
ROM image to use for Extended BASIC.

—altbas rom
64K-mode Extended BASIC for Dragon 64 & Dragon 200-E.

-nobas
-noextbas
-noaltbas
Indicate the corresponding ROM is not fitted in this machine.

-ext-charset rom
ROM image to use for external character generator.

-tv-type type One of ‘pal’, ‘ntsc’ or ‘pal-m’.
PAL-M is treated the same as NTSC, except with magenta-green artefacting instead
of blue-red (simulated composite rendering only at the moment).

-vdg-type type
Indicate the VDG variant fitted. One of ‘6847’ or ‘6847t1’.

-ram kbytes
Amount of RAM fitted.

-machine-cart name
Default cartridge to attach. See Section 2.2 [Cartridges], page 6.

Chapter 2: Hardware emulation 6

-nodos Indicate that XRoar is not to automatically attempt to attach a DOS cartridge to
this machine (the default is to try).

For example, if the following lines were placed in your xroar.conf, a new machine could be
selected with -default-machine pippin:
machine pippin
machine-desc "Dragon Pippin (prototype)"
machine-arch dragon32
ram 16

2.2 Cartridges

The default cartridge for a machine is selected with the -machine-cart option. XRoar has
built-in definitions for four cartridges:

‘dragondos’
DragonDOS, official disk interface cartridge from Dragon Data Ltd. Based on the
WD2797 Floppy Disk Controller chip.

‘delta’
Delta System, Premier Microsystems’ disk interface cartridge for the Dragon. Mk 2,
based on the WD2791 controller.

‘rsdos’
RSDOS, Tandy’s disk interface cartridge for use with the CoCo. Based on the
WD1793 controller.

‘ng,
John Linville’s Games Master Cartridge provides the ability to bank switch up to
64K of cartridge ROM, along with an on-board SN76489 sound chip. Be aware that
as provided, the cartridge is designed to auto-start an on-board ROM, and XRoar
reflects this use. If you want to use it as a standalone cartridge, you’ll need to use
the -no-cart-autorun option.

‘orch90’
The Orchestra 90-CC cartridge provides stereo 8-bit audio output. The default
ROM is CoCo-only, but the hardware is compatible with the Dragon.

‘ide’
Glenside IDE interface for hard disks. See Section 3.3 [Hard Disks|, page 10.

‘nx32’
Tormod Volden’s NX32 RAM expansion cartridge.

‘mooh’
Tormod Volden’s MOOH RAM expansion cartridge.

‘mpi’
Multi-Pak Interface. A CoCo add-on by Tandy that allows up to four cartridges to
be connected, selectable by software or hardware switch.

‘mpi-race’

RACE Computer Expansion Cage. A Dragon add-on by RACE similar to the MPI.
Addressing and behaviour differs.

Chapter 2: Hardware emulation 7

You can create new cartridge configurations or reconfigure existing ones. Select a cartridge
configuration with -~cart name, and use the following options to modify it:

-cart-desc text
Cartridge description shown in -cart help.

-cart-type type
Set cartridge base type. One of ‘rom’, ‘dragondos’, ‘delta’, ‘rsdos’ or ‘orch90’.

-cart-rom filename
The ROM image specified will be mapped from $C000.

-cart-rom2 filename
The ROM image specified will be mapped from $E000.

—-cart-becker
Enable becker port where supported.

-cart-autorun
Auto-start cartridge using FIRQ.

Defining extra cartridges is most usefully done in the configuration file, for example:

cart sdoseb
cart-desc "SuperDOS E6"
cart-type dragondos
cart-rom sdose6.rom
cart-rom2 dosdream.rom

This will define a cartridge called ‘sdose6’ as a DragonDOS cartridge with its ROM replaced
with sdose6.rom, and an additional ROM called dosdream.rom.

XRoar will automatically attempt to find a disk interface relevant to the current machine
unless a specific default has been configured for the machine with -machine-cart, or automatic
selection is disabled with the -nodos option.

Selecting a ROM image file with the -load or -run command line options, or with Ctrl+L
or Ctrl+Shift+L, will attach a ROM cartridge.

Within the emulator, cartridges can be enabled or disabled by pressing Ctrl+E. You will
almost certainly want to follow this with a hard reset (Ctrl+Shift+R).

2.2.1 Multi-Pak Interface

If you attach a Multi-Pak Interface (MPI), you’ll want to populate one or more of its slots

numbered 0-3). Use -mpi-load-cart [slot=]name to attach a named cartridge to the specified
p

(or next) slot. Configure the initially selected slot with -mpi-slot slot.

It’s not recommended to load more than one DOS cartridge into the MPI. As things stand,
only the last one (in slot order) will have the emulated drives properly connected.

These options also apply to the RACE Computer Expansion Cage, which provides similar
features, albeit with slightly different behaviour.

2.2.2 Becker port

XRoar supports an emulator-only feature that enables it to connect to a server using a TCP
connection to access remote facilities such as disk images and MIDI devices—the “becker port”.

This appears as a memory-mapped device, and XRoar supports it as an optional feature of the
DOS cartridge.

Enable this port when configuring a cartridge with —~cart-becker. The -becker option tells
XRoar to prefer a cartridge with it enabled when automatically selecting one.

Chapter 2: Hardware emulation 8

The TP and port to connect to can be specified with the -becker-ip and -becker-port
options. These default to ‘127.0.0.1" and ‘65504’ respectively, matching the defaults for
DriveWire 4, the most popular server application used to provide such facilities.

3 Files

In general, files can be attached on the command line with -load filename, or by pressing
Ctrl+L. XRoar judges the type of file based on its filename extension. To attempt to intelligently
autorun a file, use -run filename or press Ctrl+Shift+L. See Section 1.3 [Running programs],
page 3, for the methods XRoar will use to autorun a file.

3.1 Cassettes

XRoar supports three types of cassette image:

Extension Description

.cas Cassette file. Simple binary representation of data contained on a tape.
CUE support appends metadata describing cycle widths and representing
silence.

.wav Cassette audio file. XRoar can read sampled audio from original cassettes.

.bas, .asc ASCII BASIC file. XRoar will convert text on the fly into blocks suitable
for loading in ASCII mode. Read-only.

To create a cassette image for writing (with the CSAVE or CSAVEM BASIC commands, for
example), use the -tape-write filename option, or press Ctrl+W. If a file already exists, new
data will be appended to it. Rewind the output take to overwrite it. Note a slight behaviour
difference: CAS files can only be overwritten or appended to, WAV files can overwrite existing
data (leaving later data intact).

The currently open tape files used for reading and writing are distinct.

Some cassette tapes are distributed with only one of the stereo channels containing data, and
these sometimes cause loading issues. How stereo audio files are read can be adjusted with the
-tape-pan value option, where value is a number from 0.0 to 1.0. 0.0 will fully pan towards
the left channel, while 1.0 will fully pan to the right. The default is 0.5 (equal parts from both
channels).

A certain amount of hysteresis is applied to the input when reading audio files. By default
this is 1%, but this can be changed with the -tape-hysteresis percent option.

Select the output frame rate when writing to audio files with —tape-ao-rate hz. The default
is 9600Hz.

Some debugging actions can be triggered each time the cassette motor switches off (e.g. when
finished loading). See Section 4.7 [Debugging], page 16.

The -tape-fast option accelerates tape loading by intercepting ROM calls. Disable with
-no-tape-fast. On by default.

When fast loading is enabled, the -tape-pad-auto option will, for .cas files, ignore the
motor delay when insufficient initial leader bytes are detected. This helps with old tape images
that would not load on real hardware if simply converted to an audio file. On by default; switch
off with -no-tape-pad-auto.

The -tape-rewrite option enables rewriting of anything read from the input tape to the
output tape. This is useful for creating “well formed” .cas files. Use the -tape-rewrite-gap-
ms ms option to set the inter-block gap in milliseconds (default 500ms). You can set the leader
length following gaps with the -tape-rewrite-leader bytes option (default 256 bytes).

Where available, these options can be changed on the fly in the GUIL

Chapter 3: Files 10

3.2 Floppy Disks

If a disk interface cartridge is selected, XRoar supports virtual disks. Three virtual disk formats
are supported:

Extension Description

.dmk Disk image file in a format defined by David Keil. These images store
a lot of information about the structure of a disk and support both
single and double density data.

.jvec, .089, .dsk Disk image file in a basic sector-by-sector format with optional header
information.

.vdk Another disk image file format, used by PC-Dragon.

To insert a disk into a particular drive, press Ctrl+[1-4].

When you attach a disk, it is read into memory, and subsequent disk operations are performed
on this in-memory copy. Write enable defaults to on (so write operations on the copy will work),
but write back defaults to off, so updates will not be written to the disk image file. To toggle
write enable, press Ctrl+[5-8], where the number to press is the drive number plus 4. To toggle
write back, press Ctrl+Shift+[5-8]. Even with write back enabled, image files will not be
updated until the disk in a virtual drive is changed, or you quit the emulator.

Where available, these options can also be changed on the fly in the GUI.
Write back can be set to default to on with the -disk-write-back command line option.

To flush any changes made to in-memory disk images to their backing file (but only those
with write back enabled), press Ctrl+Shift+D.

The JVC format specifies that the disk images without headers are single-sided, but some
double-sided disk images have been made available without headers. These cannot normally be
distinguished from a single-sided disk that happens to have twice the number of tracks. If an
0S-9 filesystem is present, the identification sector is inspected to determine the correct disk
structure. This step will always be performed for headerless images with the .os9 filename
extension, but may be disabled for the other valid JVC filename extensions with -no-disk-
auto-o0s9.

You can create a new blank disk in a virtual drive by pressing Ctrl+Shift+[1-4]. You will
be a prompted for a filename, and the filename extension determines which type of file will be
written.

Note that RS-DOS for the Tandy Colour Computer numbers its drives from zero instead of
one, so when you perform operations on Drive 1, from the CoCo’s point of view, that will be
Drive 0.

3.3 Hard Disks

Some support is now in place for IDE hard disk images. The ‘ide’ cartridge type emulates a
Glenside IDE controller mapped to addresses $FF50-$FF58.

A fixed image file named hd0.img in the current working directory is assumed. If the image
does not exist when you try to use the IDE cartridge, a new 256MB image is created. Images
consists of a 512 byte identifier block (ASCII string “1DED15C0” then all zeroes) followed by
a 512 byte IDENTIFY header, then the sector data. In examples, the 256 byte sector data of
standard CoCo disks is doubled up to fill the 512 byte sectors of the hard disk image.

Chapter 3: Files 11

3.4 ROM cartridges

ROM cartridge images have a .rom or .ccc filename extension. Because XRoar supports other
types of cartridge, loading a ROM image actually just creates a cartridge instance of type ‘rom’.
See Section 2.2 [Cartridges], page 6.

3.5 Snapshots

XRoar can save out a snapshot of the emulated machine state and read the snapshots back in
later. To save a snapshot, press Ctrl+S. When using Ctrl+L to load a file, anything ending in
.sna will be recognised as a snapshot.

What is included in snapshots: Selected machine architecture, complete hardware state,
current keyboard map, filenames of attached disk image files.

What is not (yet) included: Actual disk image data (only where to find it), attached cassettes
or cartridge ROM contents.

3.6 Binary files
File types containing raw binary data to be loaded into RAM:

Extension Description

.bin Binary file (DragonDOS or CoCo). XRoar can load these directly into
memory and optionally autorun them. Read-only

hex Intel hex record. An ASCII format that encodes binary data and where in
memory to load it. Read-only

Chapter 3: Files 12

3.7 Firmware ROM images
Firmware ROM image files are configured as part of a machine or a cartridge. They have a
filename extension of .rom or .dgn, and can be specified as:

e Complete path to a file.

e Base filename of an image, to be discovered within a search path.

e Base filename of an image, omitting the extension. XRoar will search as above, appending
the known ROM filename extensions.

e An ‘@ character followed by the name of a ROM list.

A ROM list is a comma-separated list of images, each following the rules above. ROM lists
may refer to other ROM lists. Define a ROM list with -romlist name=imagel[, image]
View the defined ROM lists with -romlist-print.

To make life easier, the default image for each type of machine or cartridge usually refers to
a ROM list which contains all the corresponding filenames seen “in the wild”:

Firmware ROM ROM list Canonical image names
Dragon 32 BASIC ‘@dragon32’ d32

Dragon 64 32K BASIC ‘@dragon64’ de4_1

Dragon 64 64K BASIC ‘@dragon64_alt’ d64_2

Dragon 200-E 32K BASIC ‘@dragon200e’ d200e_1

Dragon 200-E 64K BASIC ‘@dragon200e_alt’ d200e_2

Dragon 200-E Charset ‘@dragon200e_charset’ d200e_26

Tandy Colour BASIC ‘@coco’ bas13, bas12, basll, bas10
Tandy Extended BASIC ‘Qcoco_ext’ extbasll, extbas10
DragonDOS ‘@dragondos_compat’ dplus49b, sdose6, ddos40, cdos20
Delta System ‘@delta’ delta

RS-DOS ‘@rsdos’ disk11, disk10

RS-DOS with becker port ‘@rsdos_becker’ hdbdw3bck

Orchestra 90-CC ‘orch90’

The default search path for images specified only as a base filename varies by platform, and
is detailed in Chapter 1 [Getting started], page 1. This path can can be overridden with the
option ~rompath=path, where path is a colon-separated list of directories to search. The path is
parsed in the same manner as the configuration file search path (see Chapter 1 [Getting started],
page 1).

The XROAR_ROM_PATH environment variable can also be used to specify the search path, but
this behaviour is deprecated and may be removed in a future version.

A CRC32 value is calculated and reported for each ROM image loaded. XRoar uses these
CRCs to determine whether certain breakpoints can be used (e.g. for fast tape loading). The
lists of CRCs matched can be defined in a similar way to ROM lists using the -crclist
list=crcl,crc]... option. Each crc is a 8-digit hex number preceeded by ‘0x’, or the name
of a nested list preceeded by ‘@’. Use this if you have a modified version of a BASIC ROM that
maintains compatible entry points with an original. View the current lists with ~crclist-print.

Sometimes it may be useful to force CRC matching so that breakpoints apply (e.g. you are
modifying a ROM image and don’t wish to have to add its CRC to the match list each time you
modify it). The -force-crc-match option forces the CRCs to be as if an original ROM image
were loaded.

13

4 User interface

4.1 User interface module

The user interface depends on supporting toolkit packages as described in Section 1.2 [Building
from source|, page 1. Selection of user interface module may affect which other types of module
are available: in particular, video output is strongly tied to the user interface.

-ui module
Select user-interface module. -ui help to list compiled-in modules.

4.1.1 GTK+ user interface
Select with -ui gtk2.

This is the most full-featured user interface. It provides extensive dynamic menus, and control
dialogues for cassette and disk files. This is the preferred interface under Linux.

Only one video module is usable with this user interface: ‘gtkgl’.

4.1.2 SDL user interface
Select with —ui sdl.

More limited than the GTK+ interface, providing keyboard shortcuts and, in the Mac OS X
and Windows variants, some basic menus.

Under Mac OS X, many operations are usable by pressing Command+key as well as the usual
shortcut of Ctrl+key.

4.2 Video output

-vo module
Video output module to use. Available modules depend on the selected user-
interface module. -vo help gives a complete list for each possible user-interface.

-fs
Start full-screen. Toggle full-screen with Ctrl+F or F11.

-fskip frames
Specify frameskip. Default is ‘0’. For slower machines.

-gl-filter filter
Filtering method to use when scaling the screen. One of ‘linear’, ‘nearest’ or
‘auto’ (the default). OpenGL output modules only.

-invert-text
Start up with inverted text mode.

—-ccr renderer
Composite video cross-colour renderer. One of ‘simple’ (very fast), ‘6bit’ (fast,
more accurate) or ‘simulated’ (slow, very accurate). Default is ‘Bbit’.

Real NTSC machines start in one of two cross-colour states at random. Games often prompt
the user to “Press Enter if the screen is red”, for example. You can press Ctrl+4, to cycle
through three modes: Off, Blue-red and Red-blue.

Inverted text mode may be toggled by pressing Ctrl+Shift+I.

Chapter 4: User interface 14

4.3 Audio output

—-ao module
Select audio output module. -ao help for a list.

-ao-device device
Module-specific device specifier. e.g. /dev/dsp for OSS.

—ao—format format
Specify audio sample format. —ao-format help for a list.

—ao-rate hz
Specify audio frame rate, where supported. The default is taken from the operating
system if possible, otherwise it will usually be ‘48000’.

—-ao-channels n
Specify number of channels (1 or 2). Default is usually 2.

—ao-fragments n
Specify number of audio fragments.

—ao—fragment-ms ms
Specify audio fragment size in milliseconds.

—ao-fragment-frames frames
Specify audio buffer size in frames.

—ao-buffer-ms ms
Specify total audio buffer size in milliseconds.

—ao-buffer-frames frames
Specify total audio buffer size in frames.

—-ao-gain db
Specify audio gain in dB relative to 0 dBFS. Only negative values really make sense
here. The default is ‘-3.0’.

-volume volume
Older way to specify volume. Simple linear scaling, using values 0-100.

Audio latency is a concern for emulators, so XRoar allows the buffering characteristics to
be configured with the fragment and buffer options above. Not all audio modules support all
options, but setting the total audio buffer size will usually have an effect. Bear in mind that
any figures reported by XRoar reflect what it was able to request, and won’t include any extra
buffering introduced by the underlying sound system.

When the Orchestra 90-CC cartridge is attached, its stereo output needs to be mixed with
the Dragon’s normal audio. To allow a small amount of headroom for this, the default gain
is set to ‘=3.0’ (dB relative to full scale), but be aware that it would still be possible for this
to clip depending on what’s happening on the internal sound bus. A setting of ~ao-gain -9.0
would give plenty of headroom (at the expense of a quieter overall sound).

4.4 Keyboard

The default mapping of host keys to emulated keys is based on the original positions of the keys,
with certain exceptions: cursor keys are mapped directly, Escape maps to the Dragon’s BREAK
key, and Home maps to CLEAR. Other keys may also be mapped to CLEAR if there is a choice in
your selected keymap that doesn’t conflict with a regular character in translated mode.

For position-based mapping, XRoar needs to be informed of the layout of the host’s keyboard.
If it is not the default (UK), use the -keymap code option.

Chapter 4: User interface 15

XRoar can also be put into “translated” keyboard mode, where characters typed on a PC
keyboard are translated into the equivalent keystrokes on the Dragon. Use the -kbd-translate
option to default to this mode. Press Ctrl+Z at any time to toggle between the two modes.

In translated mode, Shift+Return is mapped to the Caps Lock combination (Shift+0 usu-
ally, Shift+ENTER on the Dragon 200-E). Similarly, Shift+Space is mapped to the “pause
output” combination (Shift+@ usually, Shift+Space on the Dragon 200-E).

-keymap code
Specify host keyboard layout. ~keymap help for a list. Default is ‘uk’.

-kbd-translate
Start up in “translated” keyboard mode.

-type string
Intercept ROM calls to type string into BASIC on startup.

The keyboards of the Dragon, Dragon 200-E and Tandy CoCo operate in the same way, but
the matrix and/or key layouts differ. When you select a machine (see Section 2.1 [Machines],
page 5), the appropriate layout is selected for you, but you can cycle between the three by
pressing Ctrl+kK.

XRoar will simulate the “ghosting” effects inherent in a simple matrix design, but the accu-
racy of this simulation will depend very much on your host keyboard, which vary greatly in the
amount of simultaneous keypresses they support (for more information, search for “NKRO”).

4.5 Joysticks

XRoar supports attached joysticks, or can emulate them using the keyboard or mouse (“virtual
joysticks”). There are a few built-in configurations, or new ones can be defined. Here are the
built-ins:

Name Description

‘joy0’ First two axes and first two buttons of first physical joystick
‘joyl’ First two axes and first two buttons of second physical joystick
‘kjoy0’ Keyboard based virtual joystick using cursor keys and Left Alt.
‘mjoy0’ Mouse based virtual joystick mapped to screen position

By default, ‘joy0’ (the first physical joystick) is mapped to the Dragon’s right joystick port,
and ‘joyl’ (the second physical joystick) to the left port. Map different named joysticks with
-joy-right name and -joy-left name. Right and left joystick mapping can be easily swapped
by pressing Ctrl+Shift+J.

A configured “virtual joystick” can be used by pressing Ctrl+J. The first press substitutes
it for the right joystick, the second press with the left joystick and a third press disables it
again. The virtual joystick defaults to the keyboard-based ‘kjoy0’ described above, but can be
reconfigured with -joy-virtual name.

A joystick configuration can be created or configured by selecting it by name with -joy
name, and then configuring its axes with —joy-axis index=spec and buttons with -joy-button
index=spec. In each case, spec has the syntax module:args, with args being a comma-separated
list, the format of which is specific to module:

Module Axis args Button args
‘physical’ joystick-index,[-Jaxis-index joystick-index,button-index
‘keyboard’ key-name0,key-namel key-name

‘mouse’ screen-offset(,screen-offset1 button-number

Chapter 4: User interface 16

For physical joysticks a ‘=’ before the axis index inverts the axis. Key names for the keyboard
module depend on the underlying toolkit. The default screen offsets for the mouse module are
‘X=2,254’ and ‘Y=1.5,190.5" which gives reasonable behaviour for some games and utilities.

4.6 Printing

XRoar supports redirecting the Dragon parallel printer output to a file or pipe with the -1p-file
or -1p-pipe option. Printed data will be sent to the appropriate stream. Pressing Ctr1+Shift+P
will flush the current stream by closing it (so if the stream is a pipe, the filter will complete).
The stream will be re-opened when any new data is sent.

The pipe feature allows you to use useful print filters such as enscript, e.g. -lp-pipe
"enscript -B -N r -d printer-name". This will send a job to your printer, using carriage
returns as line feeds (the Dragon default), each time you press Ctrl+Shift+P (or exit the
emulator).

-lp-file filename
Append printer output to filename.

-lp-pipe command
Pipe printer output to command.

Note that the CoCo uses a serial printer port. As full serial support is yet to be added,
a very limited form of print redirection is implemented for the CoCo using a ROM BASIC
intercept. This is enough to support BASIC commands like LLIST, but will not cope with
programs implementing their own serial routines.

4.7 Debugging

XRoar can act as a remote target for GDB using a network socket. When GDB connects,
emulation is stopped. GDB can then inspect memory, instruct the target to set breakpoints
and watchpoints (read, write and access), single step or continue execution. A version of GDB
patched to specifically support 6809 targets can also perform disassembly and inspect registers.
For more information on how to use GDB, see the GDB Documentation (http://www.gnu.org/
software/gdb/documentation/).

Enable the GDB remote target with -gdb. The default IP and port for the target are
‘127.0.0.1" and ‘65520’. These can be overridden with the ~gdb-ip and -gdb-port options.

XRoar also supports a simpler “trace mode”, where it will dump a disassembly of every
instruction it executes to the console. Toggle trace mode on or off with Ctrl+V. Trace mode
can be enabled from startup with the —trace option.

User-interface debugging flag can be enabled with -debug-ui value, where only one value
is currently supported:

0x0001 Keyboard event debugging.

Hex & binary file debugging can be enabled with -debug-file value, where the value is a
bitwise ORing of the following:

0x0001 Print summary information such as load or exec addresses.
0x0002 Hex dump of all data read into memory.
0x0004 Print filename block metadata when autorunning a tape.

Floppy controller debugging can be enabled with -debug-fdc value, where the value is a
bitwise ORing of the following:

0x0001 Show FDC commands.

http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/gdb/documentation/

Chapter 4: User interface 17

0x0002 Show all FDC states.
0x0004 Hex dump of read/write sector data.
0x0008 Hex dump of becker port conversation data.

The GDB stub can also emit debug information about its own operation with -debug-gdb
value, where value is a bitwise ORing of:

0x0001 Connection open and close.
0x0002 Show packet data.

0x0004 Checksum reporting.
0x0008 Report on general queries.

The special value argument of -1 parses as “all bits set”, and so enables all corresponding
debug options.

XRoar prints various other informational messages to standard output by default, including
when the state of certain toggles is modified. Verbosity can be changed with the -verbose
level option. —quiet is equivalent to -verbose 0. Levels are:

0 Quiet. Only warnings and errors printed.

1 Print startup diagnostics and emulator state changes (default).
2 Report some emulated machine state changes.

3 Miscellaneous internal debugging.

XRoar can be told to exit after a number of (emulated) seconds with the -timeout seconds
option.

XRoar can quit a number of seconds after the cassette motor is switched off with the
-timeout-motoroff seconds option. This is useful in the case of automatic tape rewriting.
A value of 1 is usually sufficient to account for the brief motor click that occurs after header
blocks and during gapped loading.

Similarly, a snapshot can be automatically written after loading with the -snap-motoroff
file option. The file is overwritten each time the motor transitions to off. This can be used
to help analyse the machine state immediately after loading, before any autorun code has taken
effect.

To see debug output from the pre-built Windows binary, run it with -C as the first option to
allocate a console.

4.8 Keyboard shortcuts

A summary of commonly available shortcuts.
Ctrl+A Cycle through cross-colour video modes (hi-res only).
Ctrl+D Open disk control dialogue (GTK+ only).

Ctrl+Shift+D
Flush disk images.

Ctrl+E Toggle DOS emulation on/off - reset to take effect.

Ctrl+F, F11
Toggle full screen mode.

Ctrl+Shift+H, Pause
Toggles pause mode (HALTSs the CPU). As seen on the Dynacom MX-1600.

Chapter 4: User interface

Ctrl+Shift+I

Toggle text mode inverse video.

Ctrl+J Cycle through joystick emulation modes (None, Right, Left).
Ctrl+Shift+J
Swap left and right joysticks.
Ctrl+K Cycle through Dragon, Dragon 200-E and CoCo keyboard layouts.
Ctrl+L Load a file (see below).
Ctrl+Shift+L
Load a file and attempt to autorun it where appropriate.
Ctri+M Cycle through emulated machine types (resets machine).
Ctrl+Shift+P
Flush printer output.
Ctri+Q Quit emulator.
Ctrl+R Soft reset emulated machine.
Ctrl+Shift+R
Hard reset emulated machine.
Ctrl+S Save a snapshot.
Ctrl+T Open the tape control dialogue (GTK+ only).
Ctrl+V Toggle trace mode.
Ctrl+W Attach a virtual cassette file for writing.
Ctrl+Z Enable keyboard translation mode.
F12 While held, the emulator will run at the maximum possible speed.
Shift+F12

Toggle rate limiting. Emulator will run at maximum speed until pressed again.

18

19

5 Troubleshooting

Some commonly encountered issues:

e [only see a checkerboard pattern of orange and inverse ‘@’ signs.

This probably indicates that XRoar could not locate any BASIC ROM images. Acquire
some and put them in the directory appropriate to your platform. XRoar tries to find ROMs
for machines in the following order if you do not specify a default machine: Dragon 64, Dragon
32, CoCo.

cC» 1982 DRAGOM DATA LTD
16K BAZIC IMTERFRETER 1.0
cC» 1982 EY MICROEOFT

Ok

Figure 5.1: Emulator with and without BASIC ROM

e This program is supposed to be in colour, but all I see is black & white.

Try pressing Ctrl+A one or more times. What this really means is that you're used to running
the program on an NTSC machine, and it makes use of cross-colour, but XRoar is emulating a
PAL machine. Try starting with ~-default-machine tano or ~default-machine cocous.

TIHE

=
HEITTEN

EILL DUnLeEuy ano
HAaERY LAaFNEAFR

IGHT 4983
x TROM

Figure 5.2: Time Bandit, Dunlevy & Lafnear, 1983 in different artefact modes

20

6 Acknowledgements

I made reference to the MAME 6809 core for clues on how the overflow bit in the condition code
register was handled.

Thanks to all the people on the Dragon Archive Forums (http://archive.worldofdragon.
org/phpBB3/) for helpful feedback and insight.

Darren Atkinson’s Motorola 6809 and Hitachi 6309 Programmers Reference has been very
useful for 6309 support and fleshing out some of the illegal instructions on the 6809.

Alan Cox contributed the IDE code.

Tormod Voldon contributed support for his NX32 and MOOH devices (including general SPI
and SD image support).

http://archive.worldofdragon.org/phpBB3/
http://archive.worldofdragon.org/phpBB3/

	1 Getting started
	Installation & running
	Mac OS X binary package
	Windows binary package

	Building from source
	Dependencies
	Compilation

	Running programs
	Configuration

	2 Hardware emulation
	Machines
	Cartridges
	Multi-Pak Interface
	Becker port

	3 Files
	Cassettes
	Floppy Disks
	Hard Disks
	ROM cartridges
	Snapshots
	Binary files
	Firmware ROM images

	4 User interface
	User interface module
	GTK+ user interface
	SDL user interface

	Video output
	Audio output
	Keyboard
	Joysticks
	Printing
	Debugging
	Keyboard shortcuts

	5 Troubleshooting
	6 Acknowledgements

