
XRoar 0.30.2
Dragon and Tandy Colour Computer emulator

This manual is for XRoar (version 0.30.2), a Dragon and Tandy Colour Computer emulator.

Copyright c© 2013 Ciaran Anscomb.

i

Table of Contents

Introduction . 1

1 Getting started . 2
1.1 Installation & running . 2

1.1.1 Mac OS X binary package . 2
1.1.2 Windows binary package . 2

1.2 Building from source . 2
1.2.1 Dependencies . 2
1.2.2 Compilation . 3

1.3 Running programs . 4
1.4 Configuration file . 4

2 Hardware emulation . 6
2.1 Machines . 6
2.2 Cartridges . 7

2.2.1 Becker port . 8

3 Files . 9
3.1 Cassettes . 9
3.2 Disks . 9
3.3 ROM cartridges . 10
3.4 Snapshots . 10
3.5 Binary files . 10
3.6 Firmware ROM images . 11

4 User interface . 12
4.1 User interface module . 12

4.1.1 GTK+ user interface . 12
4.1.2 SDL user interface . 12
4.1.3 Mac OS X user interface . 12

4.2 Keyboard shortcuts . 12
4.3 Video output . 13
4.4 Audio output . 14
4.5 Keyboard . 14
4.6 Joysticks . 15
4.7 Printing . 15
4.8 Debugging . 16

5 Troubleshooting . 17

6 Acknowledgements . 18

Introduction 1

Introduction

XRoar is a Dragon emulator that runs on a wide variety of platforms. Due to hardware simi-
larities, XRoar also emulates the Tandy Colour Computer (CoCo) models 1 & 2. Some features
are:

• Emulates Dragon 32, Dragon 64, Tandy CoCo 1 & 2, and compatibles.

• Emulates DragonDOS, Delta and RSDOS disk systems.

• Emulates the Orchestra 90-CC stereo sound cartridge.

• Supports both raw and translated keyboard modes.

• Reads and writes virtual cassettes (compact .cas files and audio files).

• Reads and writes VDK, JVC and DMK format virtual floppy diskettes.

• Saves and loads machine snapshots.

• Provides a GDB target for remote debugging.

XRoar was originally written to run on Solaris, Linux and the GP32 handheld. Later, it was
ported to the Nintendo DS. Support has now been dropped for the GP32 and NDS as emulation
accuracy, and thus the CPU requirement, has increased.

XRoar is easily built from source under Linux, and binary packages are provided for Mac OS
X and Windows.

Chapter 1: Getting started 2

1 Getting started

1.1 Installation & running

Pre-built binary packages are available from the XRoar home page1. If one is not available
for your architecture, you will need to build from source. XRoar should build and run on any
POSIX-like system for which SDL is available.

You will also need BASIC ROM images—binary dumps of the firmware from an original
machine. The originals were part-written by Microsoft, so they are not distributed in the XRoar
packages.

1.1.1 Mac OS X binary package

Download the appropriate .dmg image for your system. Open the image and drag the application
icon to /Applications/.

For troubleshooting or testing options, it’s often a good idea to run from the command line,
but application packages don’t make that trivial. A symbolic link to somewhere in your PATH is
all that’s required. e.g.:

$ sudo ln -s /Applications/XRoar.app/Contents/MacOS/xroar \

/usr/local/bin/xroar

After this, you can start the emulator by simply typing xroar followed by any command line
options.

ROM images should be placed in a directory you create under your HOME named
~/Library/XRoar/roms/ (not the system directory, /Library/. Name any configuration file
you create ~/Library/XRoar/xroar.conf.

The Mac OS X build provides a menu for access to certain features, and often accepts the
more familiar Command+key in place of the Control+key shortcuts listed in this manual.

1.1.2 Windows binary package

Download and unzip the appropriate .zip distribution for your system. The easiest way forward
is to simply run it from this directory.

Copy ROM images to the same directory, and if you create a configuration file, simply name
if xroar.conf and put it in the same directory.

Note when troubleshooting that the Windows packages are built using MinGW2 (Minimalist
GNU for Windows), and instead of printing to the console, useful information will end up in
files called stdout.txt or stderr.txt.

1.2 Building from source

1.2.1 Dependencies

If there is no binary package for your system, you will have to build from source. XRoar can use
various backend toolkits, and you will need to ensure you have their development files installed.
If you’re using Debian, this can (at the time of writing) be achieved with the following simple
command:

$ sudo apt-get install build-essential libsndfile1-dev libgtk2.0-dev \

libgtkglext1-dev libasound2-dev

1 http://www.6809.org.uk/dragon/xroar.shtml
2 http://www.mingw.org/

http://www.6809.org.uk/dragon/xroar.shtml
http://www.mingw.org/

Chapter 1: Getting started 3

Under Mac OS X, first be sure to install Apple’s Xcode3 package. The easiest way to then
ensure you have XRoar’s dependencies available is to use a system like Homebrew4 or MacPorts5.
For Homebrew, the following command will install the required dependencies:

$ brew install libsndfile sdl

Otherwise, you’ll have to do a bit of platform-specific research to ensure you have all the
dependencies for a full build:

GTK+6, the GIMP toolkit, provides the most full-featured user interface. It is only usable as
such if you also have GtkGlExt7, an OpenGL extension used to provide video output. Otherwise,
it can provide a file requester for use by other user interfaces.

SDL8, Simple Directmedia Layer, provides a more basic user experience, with most function-
ality only available through the keyboard shortcuts. Under Mac OS X, a special case of the SDL
UI is built that also provides some menus. Unless you are building for Linux, SDL is required
to use joysticks.

Other supported audio APIs: OSS, ALSA, PulseAudio, CoreAudio, JACK, Sun audio (not
tested in quite a while).

libsndfile9 is recommended to enable support for using audio files as cassette images.

1.2.2 Compilation

Once you have the dependencies, building XRoar follows a familiar procedure:

$ gzip -dc xroar-0.30.2.tar.gz | tar xvf -

$ cd xroar-0.30.2

$./configure

$ make

$ sudo make install

The configure script has a lot of options guiding what it tests for, specifying cross-
compilation, changing the install path, etc. List them all with the --help option. Be aware
that this is a custom script, it is not generated by the GNU build system.

By default, configure will set up an install prefix of /usr/local, but this can be changed
by using the --prefix=path option.

Once built, run make install as root (or use sudo, as in the example above) to install
the binary and info documentation on your system. The executable is called xroar. ROM
images should be placed either in your home directory as ~/.xroar/roms/, or under the in-
stallation prefix as prefix/share/xroar/roms/. Any configuration file should be created as
~/.xroar/xroar.conf.

XRoar can be built on one platform to run on another. The Windows binary package
is built like this. To specify a cross-compile, use the --host=host argument to configure.
For example, to build for Windows, you might use ‘./configure --host=i686-w64-mingw32’.
Getting everything “just so” for a cross-build can be a tricky procedure, and the details are
beyond the scope of this manual.

3 https://developer.apple.com/xcode/
4 http://mxcl.github.com/homebrew/
5 http://www.macports.org/
6 http://www.gtk.org/
7 http://projects.gnome.org/gtkglext/
8 http://www.libsdl.org/
9 http://www.mega-nerd.com/libsndfile/

https://developer.apple.com/xcode/
http://mxcl.github.com/homebrew/
http://www.macports.org/
http://www.gtk.org/
http://projects.gnome.org/gtkglext/
http://www.libsdl.org/
http://www.mega-nerd.com/libsndfile/

Chapter 1: Getting started 4

1.3 Running programs

Images of ROM cartridges, cassettes and disks can all be attached by pressing Control+L.
Cassettes will be positioned at the beginning of the “tape” and disks will be inserted into
Drive 1.

To attach an image and try to automatically start it, press Control+Shift+L instead. XRoar
will try and start the program using the normal method for the type of image:

• If a BASIC program is found on a cassette, XRoar types “CLOAD”, waits for the program
to load, then types “RUN”.

• For machine code programs on cassette, XRoar types “CLOADM:EXEC”.

• If a ROM cartridge is inserted, the emulated machine is power cycled.

• If a disk image is autorun, XRoar types “BOOT” (Dragon) or “DOS” (CoCo).

If you have trouble with a program, refer to its loading instructions: it may require a different
series of commands to get going. If you still have issues, see Section 2.2 [Cartridges], page 7,
Section 3.1 [Cassettes], page 9, or Section 3.2 [Disks], page 9.

The keyboard layout of modern machines is not identical to that of the Dragon, so XRoar
provides two ways of working. The default, “untranslated”, is to map key positions as closely
as possible (e.g., the key to the right of P maps to @). Pressing Control+Z toggles “translated”
mode, which tries to map key symbols closely instead (e.g., pressing ’ will press Shift+7 in the
emulated machine).

In addition, a couple of keys aren’t always available on modern keyboads, so Escape maps
to the Dragon’s BREAK key, and Grave (‘) maps to CLEAR. See Section 4.5 [Keyboard], page 14.

XRoar will make use of attached joysticks, but can also emulate them with the cursor keys
and Left Alt. Press Control+J to cycle through three emulation modes: No joystick emulation
(default), Right joystick, Left joystick. See Section 4.6 [Joysticks], page 15.

1.4 Configuration file

This manual details the options available for configuring XRoar. Each option can be passed on
the command line or placed in a configuration file called xroar.conf. xroar.conf is read first,
and any command line options then take precedence. Directives are listed in xroar.conf one
per line, and the leading dashes may be omitted.

The installation and compilation sections above list good default locations for xroar.conf,
but it is actually searched for in a list of directories. You can override this search path with the
XROAR_CONF_PATH environment variable, which contains a ‘:’-separated list of directories. Here
are the defaults:

Platform Default XROAR_CONF_PATH
Unix/Linux ~/.xroar:prefix/etc:prefix/share/xroar
Mac OS X ~/Library/XRoar:~/.xroar:prefix/etc:prefix/share/xroar
Windows :~/Local Settings/Application Data/XRoar:~/Application Data/XRoar

Note the leading ‘:’ in the Windows default indicates an empty entry, meaning it will look in
the current working directory first (i.e., you can put xroar.conf into the directory from which
you run XRoar).

‘~’ indicates the user’s home directory: the HOME environment variable on Unix systems, or
USERPROFILE on Windows. prefix is the installation prefix, which is usually /usr/local.

To bypass the search path and start XRoar using a specific configuration file, pass -c

filename as the very first option to XRoar.

Chapter 1: Getting started 5

To print the complete current configuration to standard output (suitable for redirection to
a config file), run with -config-print. This will include all the built-in machine and cartridge
definitions.

Chapter 2: Hardware emulation 6

2 Hardware emulation

2.1 Machines

With no other options, XRoar searches the ROM path and determines which supported machine
has firmware ROM images are available. It tries in this order: Dragon 64, Dragon 32, Tandy
CoCo. This can be overridden with the -default-machine name option. XRoar has built-in
configurations for the following machines:

Name Description
‘dragon32’ Dragon 32 (PAL).
‘dragon64’ Dragon 64 (PAL).
‘tano’ Tano Dragon (NTSC).
‘coco’ Tandy Colour Computer (PAL).
‘cocous’ Tandy Color Computer (NTSC).
‘mx1600’ Dynacom MX-1600 (PAL-M).

You can create new machine configurations or reconfigure existing ones. Select a machine
configuration with -machine name, and use the following options to modify it:

-machine-desc name

Description shown in -machine help.

-machine-arch arch

Base machine architecture. One of ‘dragon64’, ‘dragon32’ or ‘coco’.

-machine-cpu cpu

Fitted CPU. One of ‘6809’ or ‘6309’. Hitachi 6309 support is not as well tested.

-bas rom ROM image to use for Colour BASIC (CoCo only).

-extbas rom

ROM image to use for Extended BASIC.

-altbas rom

64K-mode Extended BASIC for Dragon 64.

-nobas

-noextbas

-noaltbas

Indicate the corresponding ROM is not fitted in this machine.

-tv-type type

One of ‘pal’, ‘ntsc’ or ‘pal-m’. PAL-M support is not complete, and will instead
be treated the same as NTSC.

-vdg-type type

Indicate the VDG variant fitted. One of ‘6847’ or ‘6847t1’.

-ram kbytes

Amount of RAM fitted.

-machine-cart name

Default cartridge to attach. See Section 2.2 [Cartridges], page 7.

-nodos Indicate that XRoar is not to automatically attempt to attach a DOS cartridge to
this machine (the default is to try).

For example, if the following lines were placed in your xroar.conf, a new machine could be
selected with -default-machine pippin:

Chapter 2: Hardware emulation 7

machine pippin

machine-desc Dragon Pippin (prototype)

machine-arch dragon32

ram 16

2.2 Cartridges

The default cartridge for a machine is selected with the -machine-cart option. XRoar has
built-in definitions for four cartridges:

‘dragondos’
DragonDOS, official disk interface cartridge from Dragon Data Ltd. Based on the
WD2797 Floppy Disk Controller chip.

‘delta’

Delta System, Premier Microsystems’ disk interface cartridge for the Dragon. Mk 2,
based on the WD2791 controller.

‘rsdos’

RSDOS, Tandy’s disk interface cartridge for use with the CoCo. Based on the
WD1793 controller.

‘orch90’

The Orchestra 90-CC cartridge provides stereo 8-bit audio output. The default
ROM is CoCo-only, but the hardware is compatible with the Dragon.

You can create new cartridge configurations or reconfigure existing ones. Select a cartridge
configuration with -cart name, and use the following options to modify it:

-cart-desc text

Cartridge description (showed in -cart help).

-cart-type type

Set cartridge base type. One of ‘rom’, ‘dragondos’, ‘delta’, ‘rsdos’ or ‘orch90’.

-cart-rom filename

The ROM image specified will be mapped from $C000.

-cart-rom2 filename

The ROM image specified will be mapped from $E000.

-cart-becker

Enable becker port where supported.

-cart-autorun

Auto-start cartridge using FIRQ.

Defining extra cartridges is most usefully done in the configuration file, for example:

cart sdose6

cart-desc SuperDOS E6

cart-type dragondos

cart-rom sdose6.rom

cart-rom2 dosdream.rom

This will define a cartridge called ‘sdose6’ as a DragonDOS cartridge with its ROM replaced
with sdose6.rom, and an additional ROM called dosdream.rom.

XRoar will automatically attempt to find a disk interface relevant to the current machine
unless a specific default has been configured for the machine with -machine-cart, or automatic
selection is disabled with the -nodos option.

Chapter 2: Hardware emulation 8

Selecting a ROM image file with the -load or -run command line options, or with Control+L

or Control+Shift+L, will attach a ROM cartridge.

Within the emulator, cartridges can be enabled or disabled by pressing Control+E. You will
almost certainly want to follow this with a hard reset (Control+Shift+R).

2.2.1 Becker port

XRoar supports an emulator-only feature that enables it to connect to a server using a TCP
connection to access remote facilities such as disk images and MIDI devices—the “becker port”.
This appears as a memory-mapped device, and XRoar supports it as an optional feature of the
DOS cartridge.

Enable this port when configuring a cartridge with -cart-becker. The -becker option tells
XRoar to prefer a cartridge with it enabled when automatically selecting one.

The IP and port to connect to can be specified with the -becker-ip and -becker-port

options. These default to “localhost” and “65504” respectively, matching the defaults for
DriveWire 4, the most popular server application used to provide such facilities.

Chapter 3: Files 9

3 Files

In general, files can be attached on the command line with -load filename, or by pressing
Control+L. XRoar judges the type of file based on its extension. To attempt to intelligently au-
torun a file, use -run filename or press Control+Shift+L. See Section 1.3 [Running programs],
page 4 for the methods XRoar will use to autorun a file.

3.1 Cassettes

XRoar supports three types of cassette image:

Extension Description
.cas Cassette file. Simple binary representation of data contained on a tape.

Cannot represent silence, or some custom encodings.

.wav Cassette audio file. XRoar can read sampled audio from original cassettes.

.bas, .asc ASCII BASIC file. XRoar will convert text on the fly into blocks suitable
for loading in ASCII mode. Read-only.

To create a cassette image for writing (with the CSAVE or CSAVEM BASIC commands, for
example), use the -tape-write filename option, or press Control+W. Created files will be
truncated to zero length, so be careful not to overwrite any existing files with this command.

The currently open tape files used for reading and writing are distinct.

Four options affect how tapes are read:

The -tape-fast option accelerates tape loading by intercepting ROM calls. Disable with
-no-tape-fast. On by default.

The -tape-pad option tries to make loading more reliable by intercepting ROM calls and
inserting extra leader bytes where appropriate. Disable with -no-tape-pad.

The -tape-pad-auto option will, for .cas files, automatically switch on leader padding when
insufficient initial leader bytes are found at the beginning of the file, otherwise it is left alone.
Disable with -no-tape-pad-auto. On by default.

The -tape-rewrite option enables rewriting of anything read from the input tape to the
output tape. This is useful for creating “well formed” .cas files.

Where available, these options can be changed on the fly in the GUI.

3.2 Disks

If a disk interface cartridge is selected, XRoar supports virtual disks. Three virtual disk formats
are supported:

Extension Description
.dmk Disk image file in a format defined by David Keil. They store a lot of

information about the structure of a disk and support both single and
double density data. All disk images are manipulated internally in (near
enough) this format.

.jvc, .dsk Disk image file in a basic sector-by-sector format with optional header
information.

.vdk Another disk image file format, used by PC-Dragon.

To insert a disk into a particular drive, press Control+[1-4].

When you attach a disk, it is read into memory, and subsequent disk operations are performed
on this in-memory copy. Write enable defaults to on (so write operations on the copy will work),
but write back defaults to off, so updates will not be written to the disk image file. To toggle

Chapter 3: Files 10

write enable, press Control+[5-8], where the number to press is the drive number plus 4. To
toggle write back, press Control+Shift+[5-8]. Even with write back enabled, image files will
not be updated until the disk in a virtual drive is changed, or you quit the emulator.

Where available, these options can also be changed on the fly in the GUI.

Write back can be set to default to on with the -disk-write-back command line option.

The JVC format specifies that the default number of sides in a headerless image is 1, but
some disk images are distributed without headers that are 40 track, double-sided. As these
cannot be distinguished from 80 track single-sided disks, an option is provided to force the issue.
If you’re having such problems, run with the -disk-jvc-hack option.

You can create a new blank disk in a virtual drive by pressing Control+Shift+[1-4]. You will
be a prompted for a filename, and the extension determines which type of file will be written.

3.3 ROM cartridges

ROM cartridge images have a .rom or .ccc extension. Because XRoar supports other types of
cartridge, loading a ROM image actually just creates a cartridge instance of type ‘rom’. See
Section 2.2 [Cartridges], page 7.

3.4 Snapshots

XRoar can save out a snapshot of the emulated machine state and read the snapshots back in
later. To save a snapshot, press Control+S. When using Control+L to load a file, anything
ending in .sna will be recognised as a snapshot.

What is included in snapshots: Selected machine architecture, complete hardware state,
current keyboard map, filenames of attached disk image files.

What is not (yet) included: Actual disk image data (only where to find it), attached cassettes
or cartridge ROM contents.

3.5 Binary files

File types containing raw binary data to be loaded into RAM:

Extension Description
.bin Binary file (DragonDOS or CoCo). XRoar can load these directly into

memory and optionally autorun them. Read-only

.hex Intel hex record. An ASCII format that encodes binary data and where in
memory to load it. Read-only

Chapter 3: Files 11

3.6 Firmware ROM images

Firmware ROM image files are configured as part of a machine or a cartridge. They have an
extension of .rom or .dgn, and can be specified as:

• Complete path to a file.

• Base filename of an image, to be discovered within a search path.

• Base filename of an image, omitting the extension. XRoar will search as above, appending
the known ROM file extensions.

• An ‘@’ character followed by the name of a ROM list.

A ROM list is a comma-separated list of images, each following the rules above. ROM lists
may refer to other ROM lists. Define a ROM list with -romlist name=image[,image]....
View the defined ROM lists with -romlist-print.

To make life easier, the default image for each type of machine or cartridge usually refers to
a ROM list which contains all the corresponding filenames seen “in the wild”:

Firmware ROM ROM list Canonical image names
Dragon 32 BASIC ‘@dragon32’ d32

Dragon 64 32K BASIC ‘@dragon64’ d64_1

Dragon 64 64K BASIC ‘@dragon64_alt’ d64_2

Tandy Colour BASIC ‘@coco’ bas13, bas12, bas11, bas10
Tandy Extended BASIC ‘@coco_ext’ extbas11, extbas10
DragonDOS ‘@dragondos_compat’ dplus49b, sdose6, ddos40, cdos20
Delta System ‘@delta’ delta

RS-DOS ‘@rsdos’ disk11, disk10
RS-DOS with becker port ‘@rsdos_becker’ hdbdw3bck

Orchestra 90-CC ‘orch90’

The default search path for images specified only as a base filename varies by platform, and
is detailed in Chapter 1 [Getting started], page 2. This path can can be overridden with the
option -rompath=path, where path is a colon-separated list of directories to search. The path is
parsed in the same manner as the configuration file search path (see Chapter 1 [Getting started],
page 2).

The XROAR_ROM_PATH environment variable can also be used to specify the search path, but
this behaviour is deprecated and may be removed in a future version.

A CRC32 value is calculated (and reported) for loaded ROM images. XRoar uses these
CRCs to determine automatically whether certain breakpoints can be used (e.g., for fast tape
loading). The lists of CRCs matched can be defined in a similar way to ROM lists using the
-crclist list=crc[,crc]... option. Each crc is a 8-digit hex number preceeded by ‘0x’, or
the name of a nested list preceeded by ‘@’. Use this if you have a modified version of a BASIC
ROM that maintains compatible entry points with an original. View the current lists with
-crclist-print.

Sometimes it may be useful to force CRC matching so that breakpoints apply (e.g., you are
modifying a ROM image and don’t wish to have to add its CRC to the match list each time you
modify it). The -force-crc-match option forces the CRCs to be as if an original ROM image
were loaded.

Chapter 4: User interface 12

4 User interface

4.1 User interface module

The user interface depends on supporting toolkit packages as described in Section 1.2 [Building
from source], page 2. Selection of user interface module may affect which other types of module
are available: in particular, video output is strongly tied to the user interface.

-ui module

Select user-interface module. -ui help to list compiled-in modules.

4.1.1 GTK+ user interface

Select with -ui gtk2.

This is the most full-featured user interface. It provides extensive dynamic menus, and control
dialogues for cassette and disk files. This is the preferred interface under Linux.

Only one video module is usable with this user interface: ‘gtkgl’.

4.1.2 SDL user interface

Select with -ui sdl.

A basic interface that provides no menus or control dialogues. All actions are performed
through keyboard shortcuts. Provides three video output modules: ‘sdlgl’ (OpenGL, pre-
ferred), ‘sdlyuv’ (YUV, often accelerated under X11) and ‘sdl’. -vo sdl is the least capable,
but most compatible; try this if you are having problems with OpenGL.

This is the only available user interface in the Windows binary distribution.

4.1.3 Mac OS X user interface

Select with -ui macosx.

This is actually a special case of the SDL user interface. A basic set of menus are created,
and many operations are usable by pressing Command+key instead of Control+key.

This is the only available user interface in the Mac OS X binary distribution.

4.2 Keyboard shortcuts

A summary of commonly available shortcuts.

Control+A

Cycle through cross-colour video modes (hi-res only).

Control+D

Open disk control dialogue (GTK+ only).

Control+E

Toggle DOS emulation on/off - reset to take effect.

Control+F, F11
Toggle full screen mode.

Control+J

Cycle through joystick emulation modes (None, Right, Left).

Control+Shift+J

Swap left and right joysticks.

Control+K

Toggle between Dragon and CoCo keyboard layout.

Chapter 4: User interface 13

Control+L

Load a file (see below).

Control+Shift+L

Load a file and attempt to autorun it where appropriate.

Control+M

Cycle through emulated machine types (resets machine).

Control+Shift+P

Flush printer output.

Control+Q

Quit emulator.

Control+R

Soft reset emulated machine.

Control+Shift+R

Hard reset emulated machine.

Control+S

Save a snapshot.

Control+T

Open the tape control dialogue (GTK+ only).

Control+W

Attach a virtual cassette file for writing.

Control+Z

Enable keyboard translation mode.

F12 While held, the emulator will run at the maximum possible speed.

Shift+F12

Toggle rate limiting. Emulator will run at maximum speed until pressed again.

Pause Toggles pause mode (HALTs the CPU). As seen on the Dynacom MX-1600.

XRoar still supports the use of some old keyboard commands that were used to attach specific
types of file. Control+B and Control+H are synonymous with Control+L.

4.3 Video output

-vo module

Video output module to use. Available modules depend on the selected user-
interface module. -vo help for a list.

-fs

Start full-screen. Toggle full-screen with Control+F or F11.

-fskip frames

Specify frameskip. Default is ‘0’. For slower machines.

-gl-filter filter

Filtering method to use when scaling the screen. One of ‘linear’, ‘nearest’ or
‘auto’ (the default). OpenGL output modules only.

-ccr renderer

Cross-colour renderer. Either ‘simple’ (very fast) or ‘5bit’ (fast, more accurate).
Default is ‘5bit’.

Chapter 4: User interface 14

Real NTSC machines start in one of two cross-colour states at random. Games often prompt
the user to “Press Enter if the screen is red”, for example. You can press Control+A, to cycle
through three modes: Off, Blue-red and Red-blue.

4.4 Audio output

-ao module

Select audio output module. -ao help for a list.

-ao-device device

Module-specific device specifier. e.g., /dev/dsp for OSS.

-ao-rate hz

Specify sample rate, where supported. The default is taken from the operating
system if possible, otherwise it will usually be ‘48000’.

-ao-channels n

Specify number of channels (1 or 2). Default is usually 2.

-ao-buffer-ms ms

Specify audio buffer size in milliseconds, where supported. Bigger buffers mean
greater latency (the delay between what you see and what you hear), but may help
alleviate glitchy audio on slow machines.

-ao-buffer-samples samples

Specify audio buffer size in samples.

-fast-sound

Slightly faster audio support by ignoring certain uncommon state changes.

-volume volume

Specify audio volume (0 - 100).

When the Orchestra 90-CC cartridge is attached, audio levels will be reduced due to the need
to mix in a stereo output.

4.5 Keyboard

The default mapping of host keys to emulated keys is based on the original positions of the keys,
with certain exceptions: cursor keys are mapped directly, Escape maps to the Dragon’s BREAK
key, and ‘ (grave or back-tick) maps to CLEAR.

For position-based mapping, XRoar needs to be informed of the layout of the host’s keyboard.
If it is not the default (UK or US), use the -keymap code option.

XRoar can also be put into “translated” keyboard mode, where characters typed on a PC
keyboard are translated into the equivalent keystrokes on the Dragon. Use the -kbd-translate
option to default to this mode. Press Control+Z at any time to toggle between the two modes.

-keymap code

Specify host keyboard layout. One of ‘uk’ (British), ‘us’ (American), ‘fr’ (French
AZERTY), ‘fr_CA’ (Canadian French QWERTY) or ‘de’ (German QWERTZ). De-
fault is ‘uk’.

-kbd-translate

Start up in “translated” keyboard mode.

-type string

Intercept ROM calls to type string into BASIC on startup.

Chapter 4: User interface 15

The keyboards of the Dragon and Tandy CoCo operate in the same way, but the matrix is
connected slightly differently. When you select a machine (see Section 2.1 [Machines], page 6),
the appropriate matrix layout is selected for you, but you can toggle between the two configu-
rations by pressing Control+K.

XRoar will simulate the “ghosting” effects inherent in a simple matrix design, but the accu-
racy of this simulation will depend very much on your host keyboard, which vary greatly in the
amount of simultaneous keypresses they support (for more information, search for “NKRO”).

4.6 Joysticks

XRoar supports attached joysticks, or can emulate them using the keyboard or mouse (“virtual
joysticks”). There are a few built-in configurations, or new ones can be defined. Here are the
built-ins:

Name Description
‘joy0’ First two axes and first two buttons of first physical joystick
‘joy1’ First two axes and first two buttons of second physical joystick
‘kjoy0’ Keyboard based virtual joystick using cursor keys and Left Alt.
‘mjoy0’ Mouse based virtual joystick mapped to screen position

By default, ‘joy0’ (the first physical joystick) is mapped to the Dragon’s right joystick port,
and ‘joy1’ (the second physical joystick) to the left port. Map different named joysticks with
-joy-right name and -joy-left name. Right and left joystick mapping can be easily swapped
by pressing Control+Shift+J.

A configured “virtual joystick” can be used by pressing Control+J. The first press substitutes
it for the right joystick, the second press with the left joystick and a third press disables it
again. The virtual joystick defaults to the keyboard-based ‘kjoy0’ described above, but can be
reconfigured with -joy-virtual name.

A joystick configuration can be created or configured by selecting it by name with -joy

name, and then configuring its axes with -joy-axis index=spec and buttons with -joy-button

index=spec. In each case, spec has the syntax interface:args, with args being a comma-separated
list, the format of which is specific to interface:

Interface Axis args Button args
‘physical’ joystick-index,[-]axis-index joystick-index,button-index
‘keyboard’ key-name0,key-name1 key-name
‘mouse’ screen-offset0,screen-offset1 button-number

For physical joysticks a ‘-’ before the axis index inverts the axis. Key names for the keyboard
interface depend on the underlying toolkit. The default screen offsets for the mouse interface
are ‘X=2,254’ and ‘Y=1.5,190.5’ which gives a nice spread.

4.7 Printing

XRoar supports redirecting the Dragon parallel printer output to a file or pipe with the -

lp-file or -lp-pipe option. Printed data will be sent to the appropriate stream. Pressing
Control+Shift+P will flush the current stream by closing it (so if the stream is a pipe, the filter
will complete). The stream will be re-opened when any new data is sent.

The pipe feature allows you to use useful print filters such as enscript, e.g., -lp-pipe

"enscript -B -N r -d printer-name". This will send a job to your printer, using carriage
returns as line feeds (the Dragon default), each time you press Control+Shift+P (or exit the
emulator).

Chapter 4: User interface 16

-lp-file filename

Append printer output to filename.

-lp-pipe command

Pipe printer output to command.

Note that the CoCo uses a serial printer port. As full serial support is yet to be added,
a very limited form of print redirection is implemented for the CoCo using a ROM BASIC
intercept. This is enough to support BASIC commands like LLIST, but will not cope with
programs implementing their own serial routines.

4.8 Debugging

XRoar can act as a remote target for GDB using a network socket. When GDB connects,
emulation is stopped. GDB can then inspect memory, instruct the target to set breakpoints
and watchpoints (read, write and access), single step or continue execution. A version of GDB
patched to specifically support 6809 targets can also perform disassembly and inspect registers.
For more information on how to use GDB, see the GDB Documentation1.

Enable the GDB remote target with -gdb. The default IP and port for the target are
‘localhost’ and ‘65520’. These can be overridden with the -gdb-ip and -gdb-port options.

XRoar also supports a simpler “trace mode”, where it will dump a disassembly of every
instruction it executes to the console. Toggle trace mode on or off with Control+V. Trace mode
can be enabled from startup with the -trace option.

Hex & binary file debugging can be enabled with -debug-file value, where the value is a
bitwise ORing of the following:

0x0001 Print summary information such as load or exec addresses.

0x0002 Hex dump of all data read into memory.

Floppy controller debugging can be enabled with -debug-fdc value, where the value is a
bitwise ORing of the following:

0x0001 Show FDC commands.

0x0002 Show all FDC states.

0x0004 Hex dump of read/write sector data.

0x0008 Hex dump of becker port conversation data.

The GDB stub can also emit debug information about its own operation with -debug-gdb

value, where value is a bitwise ORing of:

0x0001 Connection open and close.

0x0002 Show packet data.

0x0004 Checksum reporting.

0x0008 Report on general queries.

The special value argument of -1 parses as “all bits set”, and so enables all corresponding
debug options.

1 http://www.gnu.org/software/gdb/documentation/

http://www.gnu.org/software/gdb/documentation/

Chapter 5: Troubleshooting 17

5 Troubleshooting

Some commonly encountered issues:

• I only see a checkerboard pattern of orange and inverse ‘@’ signs.

This probably indicates that XRoar could not locate any BASIC ROM images. Acquire
some and put them in the directory appropriate to your platform. XRoar tries to find ROMs
for machines in the following order if you do not specify a default machine: Dragon 64, Dragon
32, CoCo.

Figure 5.1: Emulator with and without BASIC ROM

• A black window appears. Commands typed blind appear to work.

This has cropped up a few times for people using Windows.

By default, XRoar tries to use OpenGL for its video output. Windows versions even as late
as Windows 7 have been reported to come with drivers that do not even support basic texture
rendering (OpenGL Extension Viewer reports “Max texture image units: 0”). If this is the case,
try running with the -vo sdl option, which should select an unaccelerated, non-scalable output.

• This program is supposed to be in colour, but all I see is black & white.

Try pressing Control+A one or more times. What this really means is that you’re used to
running the program on an NTSC machine, and it makes use of cross-colour, but XRoar is
emulating a PAL machine. Try starting with -default-machine tano or -default-machine

cocous.

Figure 5.2: Time Bandit, Dunlevy & Lafnear, 1983 in different artifact modes

Chapter 6: Acknowledgements 18

6 Acknowledgements

I made reference to the MAME 6809 core for clues on how the overflow bit in the condition code
register was handled.

Thanks to all the people on the Dragon Archive Forums1 for helpful feedback and insight.

Darren Atkinson’s Motorola 6809 and Hitachi 6309 Programmers Reference has been very
useful for 6309 support and fleshing out some of the illegal instructions on the 6809.

1 http://archive.worldofdragon.org/phpBB3/

http://archive.worldofdragon.org/phpBB3/

	Introduction
	Getting started
	Installation & running
	Mac OS X binary package
	Windows binary package

	Building from source
	Dependencies
	Compilation

	Running programs
	Configuration file

	Hardware emulation
	Machines
	Cartridges
	Becker port

	Files
	Cassettes
	Disks
	ROM cartridges
	Snapshots
	Binary files
	Firmware ROM images

	User interface
	User interface module
	GTK+ user interface
	SDL user interface
	Mac OS X user interface

	Keyboard shortcuts
	Video output
	Audio output
	Keyboard
	Joysticks
	Printing
	Debugging

	Troubleshooting
	Acknowledgements

