SAMx8: Dragon 64 512K expansion

Ciaran Anscomb <www@6809.0rg.uk>

The SAMxS8 is a 512K SRAM expansion and MMU for the Dragon 64. It enables arbitrary
mapping of 16K pages in two tasks, optionally making the top two 4K regions common to all
memory maps.

The speed of modern SRAM allows the SAMXx8 to include a RAM access cycle for video
data even in the FAST CPU rate setting. Additionally, the video base address can be set to any
multiple of 32 bytes across the entire 512K.

Some SAM features are lost, mostly those only necessary to handle DRAM. For space
reasons the address-dependent CPU rate has been removed, as has undocumented video address
“glitching”. Given the new board can let the system run at double speed, and provides relatively
fine-grained video base address configuration, these were considered to be acceptable losses.

Fitting

Warning: Fitting this board requires a modification to the original motherboard. Although the
Dragon 64 PCB is pretty robust, this is old hardware, so I do not recommend trying this if you’re
not confident in your desoldering skills. Lifted pads or tracks may ensue.

To install, first desolder IC25 (74L.S244) and fit a 20 pin DIP socket in its place. Remove
the SAM from its socket (IC39). The expansion is designed to plug into both of these sockets,
replacing the function of both ICs.

The curious shape of the expansion (see Figure 1) fits it around two other ICs on the
motherboard, in case these are also socketed, e.g. if you’ve hand-built an excellent Dragon 64
reproduction motherboard. If your DRAMs are socketed, you may need to remove at least two
of them, and you may as well remove the rest. If they are soldered in, that’s likely fine: the
board should rest on top. The expansion is designed to keep any remaining on-board DRAM
idle so that it does not conflict.

Figure 1: SAMx8 PCB

g +vo

03 o i Ry Gheso
w2 K00 & w i 880
S 240 490 130
00-20 280 M40

ol 75
T o
06—10 VoK@ SAMX8 * THOLA o
07—60 i TEIPEN MWNCI
DAO®
OGND 70
cPU RAM
@12

ptt vz ) . O
JANIRENIALL : o IR RAS ©

WTIITTY

i

LB TS

© 2025 CIARAN ANSCOMB
WWW.6809.0RG.UK OGND
CC BY-—SA 4.0




Programming guide

Most of the SAM’s registers remain for compatibility. Bits are cleared by writing to even
addresses, and set by writing to odd addresses, and have the following purposes:

Address Function Address Function
$FFCO VO clear $FFC1 VO set
$FFC2 VI clear $FFC3 V1 set
$FFC4 V2 clear $FFC5 V2 set
$FFC6 F9 clear $FFC7  F9 set
$FFC8 F10 clear $FFC9 F10 set
$SFFCA Fl11 clear $FFCB F11 set
$FFCC F12 clear $FFCD F12 set
$SFFCE F13 clear $SFFCF F13 set
$FFDO F14 clear $FFD1 F14 set
$SFFD2 F15 clear $FFD3 F15 set
$SFFD4 TASK 0 $SFFD5 TASK 1
$FFD6 SLOW CPU $FFD7 FAST CPU
$FFD8 SLOW CPU $FFD9 FAST CPU
$FFDA - $FFDB -

$FFDC - $SFFDD

$FFDE 32K RAM /32K ROM S$FFDF 64K RAM

V0-V2 selects VDG mode in the same way as the SAM.

F9-F15 have been renamed here to better reflect their function: you are clearing or setting
the numbered bit within the video base address register.

The “page” bit in the SAM ($FFD4/5) has been repurposed as a TASK select register. The
default page mapping on reset for TASK 1 provides similar behaviour to the old page bit.

Address-dependent CPU rate has been removed, so the bits at SFFD6/7 switch between slow
and fast mode in the same way as $FFDS8/9.

New registers provide access to the extra RAM. For these registers, the value on the data
bus is used, though they remain write-only. The default values shown are initialised on power
on and reset.

Address Function Default

$FF30  Page in TASK 0 mapped to $0000-$3FFF
$FF31  Page in TASK 0 mapped to $4000-$7FFF
$FF32  Page in TASK 0 mapped to $8000-$BFFF
$FF33  Page in TASK 0 mapped to $C000-$FEFF
$FF34  Page in TASK 1 mapped to $0000-$3FFF
$FF35  Page in TASK 1 mapped to $4000-$7FFF
$FF36  Page in TASK 1 mapped to $8000-$BFFF
$FF37  Page in TASK 1 mapped to $C000-$FEFF
$FF38 F13-F18 (6 bits of vidleo RAM base)
$FF39 F5-F12 (8 bits of video RAM base)
$FF3F COMMON (2 bits)

S OO WNWN WD =O

Each of the eight mapping registers (four each for two tasks) accepts a 5-bit page number
(0-31), mapping an arbitrary 16K page of SRAM to that region of the CPU’s address space.



Setting bit 0 of COMMON forces the top 4K ($FO00-$FEFF and the vector area $FFEO-
$FFFF) to be mapped to page 31 whatever other configuration is in place. Setting bit 1 does the
same for the next 4K down ($EO00-$EFFF). The vector area is still read-only, and in map type
0 so is the rest, however modifications can be made by mapping page 31 elsewhere. An example
use of this function is to have a small “kernel” area handling interrupt dispatch consistently even
as tasks are switched or memory is remapped.

Writes to $FF38/9 allow you to set multiple bits of the video RAM base register at once.
They also expose extra high bits to locate video RAM anywhere within the 512K, and extra low
bits to allow it to start at any multiple of 32 bytes.

Timing

One machine cycle comprises 16 oscillator cycles (TO-TF), during which there is a video RAM
fetch and one or two CPU cycles (depending on configured CPU rate). Most operation is
synchronous with the oscillator, but changes in A13—A15 are immediately reflected in SO-S2.

The MC6809E datasheet documents the “Address Delay Time” (tap) in the BUS TIMING
CHARACTERISTICS table. This tells us that the next address from the CPU should be available
3 (2.8) oscillator periods after E falls during a slow cycle or 2 (1.44) periods during a fast cycle.
Transition points between SLOW and FAST mode should be chosen with care:

In a SLOW cycle (see Figure 2), video memory access is between T1 and T3, with RASO
rising at T2 to latch the data. CPU memory access is between TC and TF. Any decision to
transition to FAST cycles is taken at TC, which results in truncating E by one cycle.

In a FAST cycle (see Figure 3), video memory access is between TF and T1, with RASO
rising at TO to latch the data. CPU memory accesses are between T4 and T6, and between TC
and TE. Decisions to transition from FAST to SLOW taken at TO and T8, with either delaying
CPU access until next machine cycle.

If a DAO transition occurs outside the window TA-TC, VCIk is stopped until TB to
resynchronise the VDG.



J

L L L. S .

|

&_

[ N W L U L U I U A

\

J

MOTS = ALV Y NdD 10§ suiojarem Surunty, g an3ig



e
e e R

P

|

,_ \ J 3

o 9 4 L o of o 3 y 9

/A A U A U U VY U U U U R U B W

LSVA = 4LV ¥ NdD 10f SWIojoAeM SuTwil], :¢ oInSL]



CPLD design

The SAMx4 replaced the entire functionality of the SAM with an XC95144XL CPLD and
minimal interfacing. Although the obvious next step is to use this code in a larger device and
add more features, I decided to explore what could be achieved in the same space if we assume
we also want to switch to using available fast SRAM.

Because the memory is specified, a lot of the complexity for handling different RAM sizes
can be stripped out. Similarly, because it’s SRAM, no refresh is required.

And because SRAM is fast, I looked into whether there was enough room in the SAM timing
to squeeze in a video fetch even in fast CPU rate. There is, so given we can now run double
speed all the time!, I decided to take a leaf out of the CoCo 3 GIME’s book and not support
address-dependent mode at all, saving some more space.

The SAMx4 goes to lengths to reproduce known but undocumented video address
“glitching”. This is also quite expensive in terms of CPLD space, so for this experiment,
out it goes.

Dropping these features frees up enough space for the page registers, COMMON flags and
more fine-grained video RAM base control.

Physical design

To interface SRAM to the motherboard, we need data to be presented to the video latch and to
buffer it to or from the CPU. IC25 has all of these lines available, and is relatively close to the
SAM physically, so putting a socket here seems like the logical choice.

The board is laid out such that all SMT components are on the top side; you can use a PCB
manufacturer’s single-side SMT assembly service and just attach the board-to-board connectors
yourself.

The main parts are:

» Xilinx XC95144XL CPLD. Programmed to provide both SAM functionality, and extra
control lines to the rest of the board.

* ISSI IS61WV25616BLL-10TI SRAM. This is actually organised as 256K X 16 bits.
Chosen purely due to availability.

* Nexperia 74L.VC4245A-Q100 Octal dual supply translating transceiver.

The “translating transceiver” acts as a bidirectional buffer between the CPU data bus and
the SRAM, and has a tri-state control to isolate it when not in use by the CPU. It also provides
level translation between the SV TTL CPU and the 3.3V CMOS SRAM. Although the Xilinx
CPLD has 5V tolerant inputs, the selected SRAM IC does not, so this is required. The video
latch is input-only, so for that, the 3.3V SRAM lines can be connected directly (3.3V CMOS as
output is compatible with 5V TTL as input).

As a side note, if you look to employ level shifting yourself, remember that 5V CMOS
has very different characteristics to 5V TTL; the Nexperia part explicitly documents TTL
compatibility, other seemingly similar chips may not.

The chosen SRAM IC is 16-bit, but provides separate lower and upper byte control lines
(LB and UB), with unselected bytes being excluded from writes, and going high impedance on

'Tf you plan to run double speed, you should also ensure that your CPU and PIA ICs are replaced with suitably
rated parts.



reads. To work in an 8-bit system, we simply connect lines from the upper and lower bytes
together and only select one byte at a time. It is probably quite important that the chip is not
enabled (CE low) until the outputs to LB and UB are stable, else there may be brief high-current
periods between the two halves.

The connections to the motherboard are into IC sockets, and for the board-to-board
connectors I would steer clear of the “standard” pin header strips. They tend to have 0.64mm
square pins, and these can be (way) too large for a socket. Instead, I recommend connectors
with machined pins, preferably with 0.64mm diameter for soldering to the PCB, and 0.5mm
diameter on the other side for inserting into the sockets.

I’'ve used CnC Tech 220-1-XX-00X male-to-male DIL headers, and they work very well.
Unfortunately, these had to be ordered from the USA; I could find no similar product listed by
the usual UK distributors.

Previously, I’ve used Samtec TS-1XX-T-A (or -G-A) pin headers. As single-row strips, you
need to be a little more careful that things stay lined up while soldering, but they also fit well.
However, they seem to be very expensive, and end up being a significant fraction of the cost of
the BOM.

Whichever you choose, solder the connectors to the underside of the board (components
facing upwards).

Further development

Well, aside from bug fixes, probably none. That is, the SAMxS8 is an experiment to see what
useful functionality can be squeezed into the specific 144-macrocell CPLD used in the SAMx4.

That said, here are some possible considerations that a larger CPLD would enable without
much more in the way of development:

* Finer grained pages and/or
¢ more tasks and/or
* more RAM.

* Additional fine-grained video RAM offset of 0-31.

All those page bits multiply up, however, so the real next step is probably to offload all the
page mapping registers into more external SRAM, addressed by TASK register and however
many address bits from the CPLD. As power-up initialisation of that SRAM could be tricky,
you’d probably want to be bypassing that mapping by default. You could encode extra features
(e.g. write-protect flags) into each page select this way.

Whether I look into this myself really does depend on whether I ever feel the pinch of only
having a “mere” 512K.



Similar products

Stewart Orchard produced a 256K “banker board”, allowing less arbitrary mappings of 32K
blocks within 256K of DRAM (which can be installed in place of the 4164s on the existing
motherboard, so long as care is taken to isolate and separately link their extra address line). The
SAMx4 reproduced this scheme. https://gitlab.com/sorchard001/dragon-256k-banker-board

The MOOH is a cartridge expansion by Tormod Volden. It provides finer-grained page
mapping and even an SD card interface. However, because it is a cartridge, it has no ability to
affect video RAM operation, so writes to the on-board RAM are passed through for video data.
http://tormod.me/mooh.html

Julian Brown has various plans for new Dragon motherboards, expanding capabilities in
more ways than just memory. Watch this space: https://github.com/jimbro1000

The in-development CoCoMEM Jr. looks like it is intended to work with extra external
SRAM as described above. It is presented as interposing the CPU rather than the SAM, and
I’m not sure how it’s intended to interface to video data—possibly it will pass writes through to
main RAM like the MOOH. http://www.godretro.com/products/cocomem-jr/

License

Released under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA
4.0). Full text in the LICENSE file.
You are free to:

* Share — copy and redistribute the material in any medium or format

* Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:

* Attribution — You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

* ShareAlike — If you remix, transform, or build upon the material, you must distribute
your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

Revision history

2025-04-19 Between the release candidates and version 1.0, there have been significant changes
to the functionality (in particular providing finer-grained control over the COMMON area), and
timings have changed a little.


https://gitlab.com/sorchard001/dragon-256k-banker-board
http://tormod.me/mooh.html
https://github.com/jimbro1000
http://www.go4retro.com/products/cocomem-jr/

