NAME
asm6809—6809 cross-assembler

SYNOPSIS
asm6809 [OPTION]... [SOURCE-FILE]...

DESCRIPTION
asm6809 is a portable macro cross assemblgpetarg the Motorola 6809 and Hitachi 6309 processors.
These processors are most commonly encountered in the DragoaratydClblour Computer

OPTIONS
-B, ——bin
output rav binary file (dedult)

-D, ——dragondos
output DragonDOS binary file

-C, ——coco

output CoCo RS-DOS (“DECB”) genented binary file
=S, ——-srec

output Motorola SREC file
—-H, ——hex

output Intel h& record file

—e, ——exec addr
EXEC address (for output formats that support one)

-8, -9, ——6809
use 6809 ISA (deiult)
-3, -—-6309

use 6309 ISA (6809 withxeensions)

—d, ——define sym[=number]
define a symbol

——setdp value
initial value assumed for DP [undefined]

-0, ——output file

output filename
—l, —=listing file

create listing file

—-E, ——exports file
create gports table

-s, ——symbols file
create symbol table
—q, ——quiet
don't warn about illgal (but working) code

-v, ——verbose
warn about eplicitly inefficient code

——help
shav help

—=version
shav program ersion

If more than one SOURCE-FILE is specified ytlage assembled as thoughythreere all in one file.

USAGE
Text is read in and parsed, then as ynpasses are madees the parsed source as necessary (up to a limit),
until symbols are resobd and addresses are stable. Hstelt or smallest representation shoulchgs be
chosen where there is ambiguity

Output formats are: Rabinary DragonDOS binaryCoCo RS-DOS (“DECB”) binaryMotorola SREC,
Intel HEX.

asm6809(1) General Commands Manual asm6809(1)

Additional optional output files are:

» Alisting file is an annotated cppf the source file with addresses and generated code prepended to each
line.

» An exports file contains a list of all macro definitions and symbols flaggedkpartewith the EXPORT
pseudo-op. Suitable for inclusion in subsequent source files.

» A symbols file contains a list of all non-local symbols. Suitable for inclusion in subsequent source files,
but bavare multiple definitions errors if mwsource files include a common set of symbols.

Home page: kttp://www.6809.0g.uk/asm680S/

Differences to other assemblers
Motorola syntax allees a comment to follw ary operands, separated from them only by whitespazanT
extent, this assembler accepts thaif be avare that as spaces are wa#m within &pressions, if the
comment looks lik it is continuing anx@ression it will generate bad code (or raise an error if the result is
syntactically incorrect). Example:

0000 8605 Ida #5
0002 CG60A Idb #5 * 2 twice first number

A strict Motorola assemblerauld generate bytes C6 05 for the second line, as the “oRlldabe ignored.
For consisteny it is best to introduce end of line comments with a ; chara&arasterisk (*) can intro-
duce whole line comments.

An unquoted semicolonwalys introduces a comment. The alternate form of the 6309 instructions AIM,
OlIM, etc. listed in some documentation that uses a semicolon as a separator is not accepted.

A symbol may be forard referenced; grtime a reference is unresable, another pass is triggered, up to
some defined maximum.

In 6809 indeed addressing, thefeét size will dedult to the &stest possible form, e.g. if thesgft is an
expression that happens teaduate to zero, the nofeét form will be used. Prepend << to coerce a 5 bit
offset, < to coerce 8 bits or > to coerce 16 bits.

asm6809 currently has no support for OS-9 modules or multiple object linking.

Program syntax
Program files are considered line by line. Each line contains up to three fields, separated by whitespace:
label, instruction and guments. An unquoted semicolon (;) indicates that the rest of the line is to be con-
sidered a comment. Whole line comments may be introduced with an asterisk (*). Motorola-style end of
line comments without a ; are accepteditlsee the notes about assemblderbhces.

Any label must appear at thery baginning of the line. If a label is omitted, whitespace must appear before
the operator field. Certain pseudo-ops mdgcafa label's meaning,ub usually labels define a symbol
referring to the current position in the code (Program CounitétC).

The instruction field contains either an instruction op-code (mnemonic), a pseudo-op (assembiax)directi
or a macro name foxpansion.

Pseudo-ops ale conditional assembly and inline data, cafecifcode placement and symballwes and
be used to include further files inline. See the section on Pseudo-ops for more information.

Arguments are a comma-separated list: either instruction operandgioreats to a pseudo-op or macro.
Permitted aguments are specific to the instruction or pseudo-atpnlgeneral themay be:

* An expression.

» A register name, with optional pre-decrement or post-increment.

» A nested list surrounded by [and]. This is generally only used to indicate indirectéadeddressing.
In addition, ag agument may be preceded by:

* #, indicate immediatealue.

asm6809-2.11 May 2018 2

http://www.6809.org.uk/asm6809/

asm6809(1)

General Commands Manual

» <<, force 5-bit ind& offset.

» <, force direct addressing, 8-biilue or 8-bit inde offset.

» >, force etended addressing, 16-bilue or 16-bit inde offset.

Expressions

Expressions are formed of:

* A decimal number

» An octal number preceded by @ or with a leading 0.

» A binary number preceded by % or Ob.

» A hexadecimal number preceded by $ or Ox.

A floating point number: decimal digits surroundingetly one full stop (.).
» A single quote follaved by ag ASCII character (yielding the ASClkalue of that character).
» A symbol name, local forard reference or local back reference.

» Any of the abwe prefixed with a unary minus (=) or plus (+).

» A string delimited

» A combination of ay of the abwge with arithmetic, bitwise, logical or relational operators.

either by double quotes or /.

» Parenthesis to specify precedence.

asm6809(1)

The assembler uses multiple passes to resapressions. If anxgression refers to a symbol that cannot
currently be resokd, an gtra pass is triggered. Similaylif a symbol is assigned alue (e.g. by an EQU

pseudo-op) that dérs to its alue on the prgous pass, another is triggered until it becomes stable.

When not directly used for their contents (e.g. by FCC), strings can be used in placgeoféhtes. The

ASCII value of each character is used to represent 8 bits of tigeimtesult up to 32 bits. Example:

0000 CC443A ldd

Operators

The folloving operators arevailable, listed in descending order of precedence (where operators share a
precedence, left-to-rightaluation is performed):

Operator | Description
+ unary plus
- unary minus
legical, hitwise NO T
* multiplication
/ di vision
% modulo
+ addition
- subtraction
<< bitwise shift left
>> bitwise shift right
<<relatiopal operators

>>relatio

hal operators

relational equal
relational not equal

& bitwise AND
A bitwise XOR
| bitwise OR
&& logical AND

asm6809-2.11

May 2018

asm6809(1) General Commands Manual asm6809(1)

I logical OR
?: | ternary operator

Division alvays returns a floating point result. Other arithmetic operators retugeiatdé both operands
are intgers, otherwise floating point. Bitwise operators and modulo all cast their operandgédosiiated

return an intger Relational and logical operators result in Cais€, 1 if true. Intger calculations are per
formed using the platform's int64_t type, floating point uses double.

Conditional assembly

The pseudo-ops IF, ELSIF, ELSE and ENDIF guide conditional assemi#fyand ELSIF tak e one agu-
ment, which is ealuated as an inger. If the result is non-zero, the folling code will be assembled, else
it will be skipped. Undefined symbols encountered whitgluating the condition are interpreted as zero
(false) rather than raising an error

Conditional assembly pseudo-ops are permitted within macro definitions and witlbated at the time
of expansion, therefore positionahriables can be used tdeaft macro gpansion.

Sections

Code can be placed into named sections with the SECTION pseudo-op. This edorezdng source into
multiple input files more comfortable. ithout ORG or PUT direuts, sections will folle each other in
memory in the order tlyeare first defined.

Within each section, there mayigt multiple spans of discontiguous data. Certain output formats are able
to represent this, for the others (e.g. DragonDOS), the spans are combined first, wapsHegveen them
padded with zero bytes.

Local labels

Local labels are considered local to the current section. A local labey ideaimal number used in the
label field, and the same local label may appear mulitple timeseotliler labels.

As an operand, a decimal number foléal by B or F is considered to be a back or fardireference to the
previous or n&t occurrence of that numerical local label in the section.

In this xample, the 1 label occurs twiceybeach use of 1B refers to the closest one searching laadkw

0000 8E0400 scroll ldx #$0400
0003 EC8820 1 Idd 32,x
0006 ED81 std X++
0008 8CO5EO cmpx #$05e0
000B 25F6 blo 1B
000D CC6060 Idd #$6060
0010 EDS81 1 std X++
0012 8CO0600 cmpx #$0600
0015 25F9 blo 1B

0017 39 rts

An exclamation mark (!) in the label field is treated as a local label numbered zero. Operands of < and >
are considered equilent to OB and OF respewgtly, and can therefore refer to the ! local label. This is
included for compatibility with other assemblers.

As local labels can be repeated, their position is used to distinguish thethisfreason, all file inclusions
and macro xpansion must occur during the first pass so that the absolute line count at which each local
label is encountered remains the same between passes.

Macros

Start a macro definition by specifying a name for it in the label field, and MACRO in the instruction field.
Finish the definition with ENDM in the instruction field.

Use a macro by specifying its name in the instruction field. #&guments gien will be &ailable during
expansion as a positionahxable.

Positional variables can be used within strings, or pasted to form symbol names. In either gasaysthe
be quoted or thewill be passed byalue, which will result in an error if thhedo not correspond toalid

asm6809-2.11 May 2018 4

asm6809(1) General Commands Manual asm6809(1)

symbols by themsebs.

The positional ariables are referred to with \{1}, \{2}, ... , \{n}. For the first nine guments, the
braces are not required, so \1, \2, ... , \9 asdids alternaties. For compatibility with the TSC Fle
assembleranother form is accepted: &{1}, &{2}, ... , &{n}itin a string, the shorter &1, &2, ... , &9is
still valid, kut as this can be confused with bitwise AND, it is not permittedvilses.

Here's a silly gample demonstrating positionadnables and symbol pasting. Consider the Vaithg
macro definition and utilising code:

go_left equ -1

go_right equ +1

move macro
Ida X_position
adda #go_\1
sta X_position
endm

do_move
move "right”
rts

X_position rmb 1

The main code generated is as fako

0000 do_move

0000 move "right”
0000 B60009 Ida X_position
0003 8BO1 adda #go_\1
0005 B70009 sta X_position
0008 39 rts

Pseudo-ops
Conditional assembly:

IF condition
Subsequent lines are assembled only if conditiatuates to true (non-zero).

ELSIF condition
Subsequent lines are assembled only if all preceding IF and ELSIF pseudovajumted to dise
(zero) and conditionvaluates to true (non-zero).

ELSE Subsequent lines are assembled only if all preceding IF and ELSIF pseudovajumted to dlse
(zero).

ENDIF Terminate an IF statement.
Macro definition:

MACROStart defining a macro. The macro's name shall be in the label field. Subsequent lines up to the
enclosing ENDM pseudo-op will not be assembled until the macxpasa@ed. Macro definitions
may be nested; that is, using a macro may define another macro.

ENDM Finish a macro definition started with MACRO.
Inline data:

FCB value[,value]...

FCC value[,value]...
Form Constant Byte. Each value igatuated either to a number or a string. Numbers are truncated
to 8 bits and stored directly as bytesr Btrings, the ASCII alue of each character is stored in
sequential bytes.

Historically, FCB handled bytes and FCCoff Constant Character string) handled strings.
asm6809 treats them as syryomous, It is rather more strict about what is aléx as a string

asm6809-2.11 May 2018 5

asm6809(1) General Commands Manual asm6809(1)

delimiter.

FCN value[,value]...
Identical to FCC, Wt a terminating zero byte is stored after the data. Included to increase compati-
bility with other assemblers.

FCS value[,value]...

Like FCC, bt the last byte in each value has its top bit set. This is the format used to repeysenids in
the Dragon andandy Colour Computer/&SIC ROMs.

FCV value[,value]...

Like FCC, bt ASCI!I is translated into thealues typically required for display by the MC6847 VDG as
present in the Dragon andfidy Colour Computer

FCl value[,value]...
Like FCV, lot inverts bit 6 for inerse video.

FDB value[,value]...
Form Double Byte. Each value isauated to a numbgewhich is truncated to 16 bits and stored
as two successk bytes (big-endian).

FQB value[,value]...
Form Quad Byte. Each value igaduated to a numbewhich is truncated to 32 bits and stored as
four successe bytes (big-endian).

FILL value,count
Insert count bytes of value. This idegtively the same as the dwaigument form of RZB with its
arguments sapped.

RZB count[,value]

ZMB count[,value]

BSZ count[,value]
Resere Zeroed Bytes. Inserts a sequence of count bytes of zero, or value if specified.oThe tw
argument form is déctively the same as FILL with its @uments sapped.

ZMB and BSZ are alternate forms recognised for compatibility with other assemblers.
Code placement & addressing:

ALIGN alignment[,value]...
Align to memory ngt alignment bytes. &ds with value. If value is not specified, this betmlike
RMB instead.

ORG addsss
Sets the Program Counter—the base address assumed foxitlzssenbled instruction. Unless
followed by a PUT pseudo-op, this will also be the instruction's actual address in méntalg|
on the same line will define a symbol withalue of the specified address.

PUT addess
Modify the put address—the Program Counter is fectdd, so the assumed address for subse-
guent instructions remains the samat the actual data will be located eildere. Useful for
assembling code that is going to be copied into place befecaiting.

RMB count
Resere Memory Bytes. The Program Counter isathed count bytes. In some output formats
this region may be padded with zeroes, in othersvalbadable section may be created.

SECTION name
CODE

DATA

BSS

asm6809-2.11 May 2018 6

asm6809(1) General Commands Manual asm6809(1)

RAM
AUTO Switch to the named section. The Program Counter will continue from thealastivvhad while
assembling this section, or follcthe preious section if had not prsusly been seen.

Each of CODE, DATA, BSS, RAM, and AUTO switches to a section named after the pseudo-op.
They are recognised for compatibility with other assemblers.

SETDP page
Set the assumedlue of the Direct &e (DP) rgister to pge for subsequent instructions. YAn
non-ngative page is truncated to 8 bits, or specify aga¢ive number to disable automatic direct
addressing.

See the section on Direcage addressing for more information.
Symbols:

EQU value
Short for “equate”, this must be used with a label and defines a symbol with the specified value.
This may be ansingle \alid agument (e.g. anx@ression or a string).

EXPORT name[,name]...
Each name—either the name of a macro or a symbol—is flagged xpditeel. Exported macros
and symbols will be listed in thegorts output file, if specified.

SET value
Similar to EQU, this must be used with a label and defines a symbol with the specified value.
Unlike EQU, you can use SET multiple times to assigareift \alues to the same symbol without
error

Files:

END [addess]
Signifies the end of input. All further lines are dgeneled.

Optionally specifies an EXEC address to be included in the output, where supported by the output
format. An EXEC address specified on the command line weélir@wle ay value specified here.

INCLUDE filename
Includes the contents of another file at this point in assenfibly flename gument must be a
string, i.e. delimited by quotes or / characters.

INCLUDEBIN filename
Includes the binary data from filename (which, as with INCLUDE must be a delimited string)
directly.

Direct Page addessing
The 6809 rtends the zero page concept from other processors mjirajlfast accesses to whiclez page
is selected by the DirectBe rgister (DP). An assembler is not able ¢gfi track of what the code has set
this register to, It the information is useful when deciding which addressing mode to use for an instruc-
tion. The SETDP pseudo-op, or ——setdp option, informs the assembler that the suppdikeet Vs to be
assumed for DP. Set this to gatve number to undefine it and disable automatic use of direct addressing
(this is the dedult).

LICENCE
This program is free softare: you can redistrilte it and/or modify it under the terms of the GNU General
Public License as published by the Free SafeMoundation, eitherearsion 3 of the License, or (at your
option) ary later \ersion.

This program is distrilited in the hope that it will be usefuytdbWITHOUT ANY WARRANTY; without
even the implied w&rranty of MERCHANRBILITY or FITNESS FOR A RRTICULAR PURPOSE. See
the GNU General Public License for more details.

You should hee receved a cog of the GNU General Public License along with this program. If not, see
<http://www.gnu.og/licenses#.

asm6809-2.11 May 2018 7

http://www.gnu.org/licenses/

	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	Differences to other assemblers
	Program syntax
	Expressions
	Operators
	Conditional assembly
	Sections
	Local labels
	Macros
	Pseudo-ops
	Direct Page addressing

	LICENCE

