
NAME
asm6809—6809 cross-assembler

SYNOPSIS
asm6809 [OPTION]… [SOURCE-FILE]…

DESCRIPTION
asm6809 is a portable macro cross assembler targeting the Motorola 6809 and Hitachi 6309 processors.
These processors are most commonly encountered in the Dragon and Tandy Colour Computer.

OPTIONS
-B, --bin

output raw binary file (default)

-D, --dragondos
output DragonDOS binary file

-C, --coco
output CoCo RS-DOS (“DECB”) segmented binary file

-S, --srec
output Motorola SREC file

-H, --hex
output Intel hex record file

-e, --exec addr
EXEC address (for output formats that support one)

-8, -9, --6809
use 6809 ISA (default)

-3, --6309
use 6309 ISA (6809 with extensions)

-d, --define sym[=number]
define a symbol

--setdp value
initial value assumed for DP [undefined]

-o, --output file
output filename

-l, --listing file
create listing file

-s, --symbols file
create symbol table

-q, --quiet
don't warn about illegal (but working) code

-v, --verbose
warn about explicitly inefficient code

--help
show help

--version
show program version

If more than one SOURCE-FILE is specified, they are assembled as though they were all in one file.

USAGE
Text is read in and parsed, then as many passes are made over the parsed source as necessary (up to a limit),
until symbols are resolved and addresses are stable. The fastest or smallest representation should always be
chosen where there is ambiguity.

Output formats are: Raw binary, DragonDOS binary, CoCo RS-DOS (“DECB”) binary, Motorola SREC,
Intel HEX.

Home page: <http://www.6809.org.uk/asm6809/>

1

http://www.6809.org.uk/asm6809/


asm6809(1)                                                   General Commands Manual                                                   asm6809(1)

Differ ences to other assemblers
Motorola syntax allows a comment to follow any operands, separated from them only by whitespace. To an
extent, this assembler accepts that, but be aware that as spaces are allowed within expressions, if the
comment looks like it is continuing an expression it will generate bad code (or raise an error if the result is
syntactically incorrect). Example:

0000 8605 lda #5
0002 C60A ldb #5 * 2 twice first number

A strict Motorola assembler would generate bytes C6 05 for the second line, as the “* 2” would be ignored.
For consistency, it is best to introduce end of line comments with a ; character. An asterisk (*) can intro-
duce whole line comments.

An unquoted semicolon always introduces a comment. The alternate form of the 6309 instructions AIM,
OIM, etc. listed in some documentation that uses a semicolon as a separator is not accepted.

A symbol may be forward referenced; any time a reference is unresolvable, another pass is triggered, up to
some defined maximum.

In 6809 indexed addressing, the offset size will default to the fastest possible form, e.g. if the offset is an
expression that happens to evaluate to zero, the no offset form will be used. Prepend << to coerce a 5 bit
offset, < to coerce 8 bits or > to coerce 16 bits.

asm6809 currently has no support for OS-9 modules or multiple object linking.

Program syntax
Program files are considered line by line. Each line contains up to three fields, separated by whitespace:
label, instruction and arguments. An unquoted semicolon (;) indicates that the rest of the line is to be con-
sidered a comment. Whole line comments may be introduced with an asterisk (*). Motorola-style end of
line comments without a ; are accepted, but see the notes about assembler differences.

Any label must appear at the very beginning of the line. If a label is omitted, whitespace must appear before
the operator field. Certain pseudo-ops may affect a label's meaning, but usually labels define a symbol
referring to the current position in the code (Program Counter, or PC).

The instruction field contains either an instruction op-code (mnemonic), a pseudo-op (assembler directive),
or a macro name for expansion.

Pseudo-ops allow conditional assembly and inline data, can affect code placement and symbol values and
be used to include further files inline. See the section on Pseudo-ops for more information.

Arguments are a comma-separated list: either instruction operands or arguments to a pseudo-op or macro.
Permitted arguments are specific to the instruction or pseudo-op, but in general they may be:

• An expression.

• A register name, with optional pre-decrement or post-increment.

• A nested list surrounded by [ and ]. This is generally only used to indicate indirect indexed addressing.

In addition, any argument may be preceded by:

• #, indicate immediate value.

• <<, force 5-bit index offset.

• <, force direct addressing, 8-bit value or 8-bit index offset.

• >, force extended addressing, 16-bit value or 16-bit index offset.

Expressions
Expressions are formed of:

• A decimal number.

• An octal number preceded by @ or with a leading 0.

asm6809-2.10                                                           October 2017                                                                                2



asm6809(1)                                                   General Commands Manual                                                   asm6809(1)

• A binary number preceded by % or 0b.

• A hexadecimal number preceded by $ or 0x.

• A floating point number: decimal digits surrounding exactly one full stop (.).

• A single quote followed by any ASCII character (yielding the ASCII value of that character).

• A symbol name, local forward reference or local back reference.

• Any of the above prefixed with a unary minus (-) or plus (+).

• A string delimited either by double quotes or /.

• A combination of any of the above with arithmetic, bitwise, logical or relational operators.

• Parenthesis to specify precedence.

The assembler uses multiple passes to resolve expressions. If an expression refers to a symbol that cannot
currently be resolved, an extra pass is triggered. Similarly, if a symbol is assigned a value (e.g. by an EQU
pseudo-op) that differs to its value on the previous pass, another is triggered until it becomes stable.

When not directly used for their contents (e.g. by FCC), strings can be used in place of integer values. The
ASCII value of each character is used to represent 8 bits of the integer result up to 32 bits. Example:

0000 CC443A ldd #"D:"

Operators
The following operators are available, listed in descending order of precedence (where operators share a
precedence, left-to-right evaluation is performed):

Operator Description
+ unary plus
- unary minus

! ~            logical, bitwise NO T

* multiplication
/ di vision
% modulo

+ addition
- subtraction

<< bitwise shift left
>> bitwise shift right

< <=          relational operators
> >=          relational operators

== relational equal
!= relational not equal

& bitwise AND

^ bitwise XOR

| bitwise OR

&& logical AND

|| logical OR

?: ternary operator

Division always returns a floating point result. Other arithmetic operators return integers if both operands
are integers, otherwise floating point. Bitwise operators and modulo all cast their operands to integers and
return an integer. Relational and logical operators result in 0 if false, 1 if true. Integer calculations are per-
formed using the platform's int64_t type, floating point uses double.

Conditional assembly
The pseudo-ops IF, ELSIF, ELSE and ENDIF guide conditional assembly. IF and ELSIF tak e one argu-
ment, which is evaluated as an integer. If the result is non-zero, the following code will be assembled, else

asm6809-2.10                                                           October 2017                                                                                3



asm6809(1)                                                   General Commands Manual                                                   asm6809(1)

it will be skipped. Undefined symbols encountered while evaluating the condition are interpreted as zero
(false) rather than raising an error.

Conditional assembly pseudo-ops are permitted within macro definitions and will be evaluated at the time
of expansion, therefore positional variables can be used to affect macro expansion.

Sections
Code can be placed into named sections with the SECTION pseudo-op. This can make breaking source into
multiple input files more comfortable. Without ORG or PUT directives, sections will follow each other in
memory in the order they are first defined.

Within each section, there may exist multiple spans of discontiguous data. Certain output formats are able
to represent this, for the others (e.g. DragonDOS), the spans are combined first, with the gaps between them
padded with zero bytes.

Local labels
Local labels are considered local to the current section. A local label is any decimal number used in the
label field, and the same local label may appear mulitple times, unlike other labels.

As an operand, a decimal number followed by B or F is considered to be a back or forward reference to the
previous or next occurrence of that numerical local label in the section.

In this example, the 1 label occurs twice, but each use of 1B refers to the closest one searching backwards:

0000 8E0400 scroll ldx #$0400
0003 EC8820 1 ldd 32,x
0006 ED81 std ,x++
0008 8C05E0 cmpx #$05e0
000B 25F6 blo 1B
000D CC6060 ldd #$6060
0010 ED81 1 std ,x++
0012 8C0600 cmpx #$0600
0015 25F9 blo 1B
0017 39 rts

An exclamation mark (!) in the label field is treated as a local label numbered zero. Operands of < and >
are considered equivalent to 0B and 0F respectively, and can therefore refer to the ! local label. This is
included for compatibility with other assemblers.

As local labels can be repeated, their position is used to distinguish them. For this reason, all file inclusions
and macro expansion must occur during the first pass so that the absolute line count at which each local
label is encountered remains the same between passes.

Macros
Start a macro definition by specifying a name for it in the label field, and MACRO in the instruction field.
Finish the definition with ENDM in the instruction field.

Use a macro by specifying its name in the instruction field. Any arguments given will be available during
expansion as a positional variable.

Positional variables can be used within strings, or pasted to form symbol names. In either case, they must
be quoted or they will be passed by value, which will result in an error if they do not correspond to valid
symbols by themselves.

The positional variables are referred to with \{1}, \{2}, …  , \{n}. For the first nine arguments, the
braces are not required, so \1, \2, …  , \9 are valid alternatives. For compatibility with the TSC Flex
assembler, another form is accepted: &{1}, &{2}, …   , &{n}. Within a string, the shorter &1, &2, …   , &9 is
still valid, but as this can be confused with bitwise AND, it is not permitted elsewhere.

Here's a silly example demonstrating positional variables and symbol pasting. Consider the following
macro definition and utilising code:

asm6809-2.10                                                           October 2017                                                                                4



asm6809(1)                                                   General Commands Manual                                                   asm6809(1)

go_left equ -1
go_right equ +1
move macro

lda x_position
adda #go_\1
sta x_position
endm

do_move
move "right"
rts

x_position rmb 1

The main code generated is as follows:

0000 do_move
0000 move "right"
0000 B60009 lda x_position
0003 8B01 adda #go_\1
0005 B70009 sta x_position
0008 39 rts

Pseudo-ops
Conditional assembly:

IF condition
Subsequent lines are assembled only if condition evaluates to true (non-zero).

ELSIF condition
Subsequent lines are assembled only if all preceding IF and ELSIF pseudo-ops evaluated to false
(zero) and condition evaluates to true (non-zero).

ELSE Subsequent lines are assembled only if all preceding IF and ELSIF pseudo-ops evaluated to false
(zero).

ENDIF Terminate an IF statement.

Macro definition:

MACROStart defining a macro. The macro's name shall be in the label field. Subsequent lines up to the
enclosing ENDM pseudo-op will not be assembled until the macro is expanded. Macro definitions
may be nested; that is, using a macro may define another macro.

ENDM Finish a macro definition started with MACRO.

Inline data:

FCB value[,value]…
FCC value[,value]…

Form Constant Byte. Each value is evaluated either to a number or a string. Numbers are truncated
to 8 bits and stored directly as bytes. For strings, the ASCII value of each character is stored in
sequential bytes.

Historically, FCB handled bytes and FCC (Form Constant Character string) handled strings.
asm6809 treats them as synonymous, but is rather more strict about what is allowed as a string
delimiter.

FCN value[,value]…
Identical to FCC, but a terminating zero byte is stored after the data. Included to increase compati-
bility with other assemblers.

FDB value[,value]…
Form Double Byte. Each value is evaluated to a number, which is truncated to 16 bits and stored
as two successive bytes (big-endian).

asm6809-2.10                                                           October 2017                                                                                5



asm6809(1)                                                   General Commands Manual                                                   asm6809(1)

FQB value[,value]…
Form Quad Byte. Each value is evaluated to a number, which is truncated to 32 bits and stored as
four successive bytes (big-endian).

FILL value,count
Insert count bytes of value. This is effectively the same as the two-argument form of RZB with its
arguments swapped.

RZB count[,value]
ZMB count[,value]
BSZ count[,value]

Reserve Zeroed Bytes. Inserts a sequence of count bytes of zero, or value if specified. The two-
argument form is effectively the same as FILL with its arguments swapped.

ZMB and BSZ are alternate forms recognised for compatibility with other assemblers.

Code placement & addressing:

ORG address
Sets the Program Counter—the base address assumed for the next assembled instruction. Unless
followed by a PUT pseudo-op, this will also be the instruction's actual address in memory. A label
on the same line will define a symbol with a value of the specified address.

PUT address
Modify the put address—the Program Counter is unaffected, so the assumed address for subse-
quent instructions remains the same, but the actual data will be located elsewhere. Useful for
assembling code that is going to be copied into place before executing.

RMB count
Reserve Memory Bytes. The Program Counter is advanced count bytes. In some output formats
this region may be padded with zeroes, in others a new loadable section may be created.

SECTION name
CODE
DATA
BSS
RAM
AUTO Switch to the named section. The Program Counter will continue from the last value it had while

assembling this section, or follow the previous section if had not previously been seen.

Each of CODE, DATA, BSS, RAM, and AUTO switches to a section named after the pseudo-op.
They are recognised for compatibility with other assemblers.

SETDP page
Set the assumed value of the Direct Page (DP) register to page for subsequent instructions. Any
non-negative page is truncated to 8 bits, or specify a negative number to disable automatic direct
addressing.

See the section on Direct Page addressing for more information.

Symbols:

EQU value
Short for “equate”, this must be used with a label and defines a symbol with the specified value.
This may be any single valid argument (e.g. an expression or a string).

EXPORT name[,name]…
Each name—either the name of a macro or a symbol—is flagged to be exported. Exported macros
and symbols will be listed in the symbols output file, if specified.

SET value
Similar to EQU, this must be used with a label and defines a symbol with the specified value.
Unlike EQU, you can use SET multiple times to assign different values to the same symbol without

asm6809-2.10                                                           October 2017                                                                                6



asm6809(1)                                                   General Commands Manual                                                   asm6809(1)

error.

Files:

END [address]
Signifies the end of input. All further lines are disregarded.

Optionally specifies an EXEC address to be included in the output, where supported by the output
format. An EXEC address specified on the command line will override any value specified here.

INCLUDE filename
Includes the contents of another file at this point in assembly. The filename argument must be a
string, i.e. delimited by quotes or / characters.

INCLUDEBIN filename
Includes the binary data from filename (which, as with INCLUDE must be a delimited string)
directly.

Dir ect Page addressing
The 6809 extends the zero page concept from other processors by allowing fast accesses to whichever page
is selected by the Direct Page register (DP). An assembler is not able to keep track of what the code has set
this register to, but the information is useful when deciding which addressing mode to use for an instruc-
tion. The SETDP pseudo-op, or --setdp option, informs the assembler that the supplied value is to be
assumed for DP. Set this to a negative number to undefine it and disable automatic use of direct addressing
(this is the default).

LICENCE
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

asm6809-2.10                                                           October 2017                                                                                7

http://www.gnu.org/licenses/

	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	Differences to other assemblers
	Program syntax
	Expressions
	Operators
	Conditional assembly
	Sections
	Local labels
	Macros
	Pseudo-ops
	Direct Page addressing

	LICENCE

